ORGANOIRON CHEMISTRY Annual Survey for the Year 1983

ROBERT C. KERBER Department of Chemistry State University of New York at Stony Brook Long Island, N.Y. 11794-3400 (U.S.A.)

CONTENTS

Introduction	207
Reviews and books	207
Reactions of "naked" iron atoms and ions	207
Compounds with η^1 -carbon ligands	208
a. Alkyl- and aryliron compounds, R _n FeD _m	208
b. Iron monocarbonyls, e.g. D ₄ FeCO	209
c. Iron dicarbonyls, e.g. $D_3 Fe(CO)_2$	211
d. Iron tricarbonyls, e.g. D_2 Fe(CO) ₃	212
e. Iron tetracarbonyls, e.g. DFe(CO) _A and R_2 Fe(CO) _A .	213
f. Carbene complexes, e.g. R_2 CFe(CO) ₄	214
g. Some selected organic reactions and properties	
of iron carbonyls	216
η^2 -Alkene complexes	216
η^3 -Allyl complexes	217
Compounds with η^4 -ligands	217
a. Compounds with non-contiguous η^4 -coordination	217
b. Trimethylenemethyl complexes	218
c. Cyclobutadiene complexes	218
d. Cyclopentadiene complexes	219
e. Cyclohexadiene complexes	219
f. Cycloheptatriene complexes	220
g. Cyclooctatetraene complexes	221
h. Acyclic diene complexes	221
η^5 -Dienyl complexes	223
a. Compounds with open pentadienyl ligands	223
b. Cyclopentadienyldicarbonyliron hydride and	
related compounds	223
c. Fp-acyl, alkyl, and carbene complexes	226
d. Cyclopentadienyliron derivatives of η^2 to η^5 ligands	229
Compounds with η^6 -triene and arene ligands	230
	Introduction

10.	Bime	tallic compound	ls	•	•	•	•	•	•	•			,	•	•	231
	a.	Diiron compour	ds,	, de	riv	ati	ves	of	Fe	(CO	و(•	•	•		231
	b.	Derivatives of	C	2 ^{Fe}	2 (C	:0) 4	•	•	•	•	•	•		•		235
	b.	Heterobimetall	ic	con	- ipou	inds	•	•	•	•	•	•	•	•		236
11.	Trin	uclear cluster	C01	npou	nda			•	•	•		•	•	•		236
	a.	Fe ₃ clusters	٠	٠	•	•	•	•	• •	•	•		•	•	•	236
	b.	Fe ₂ M clusters	•	•	•	•	•	•	•	•	•	•	•	•	•	238
	с.	FeM ₂ clusters	•		•	•			•	•	•					23 9

	с.	FeM2	clus	ter	S	•	•	•	•	•	•	•	•	•	•	•	•	•	239
12.	Tetr	a- and	l pol	ynu	cle	ar	cl	ust	er	con	ipou	inds	•	•	•	•	•		240
13.	Refe	rences	3.	•	•	•	•	•	•	•	•	•	•	•	•	•	•		242

LIST OF ABBREVIATIONS USED

acac	acetylacetonate, (MeCO) ₂ CH ⁻
An	any arene ring, such as benzene, C ₆ H ₆
Ar	an aryl ring, such as naphthyl, C ₁₀ H ₇ -
bpy	2,2'-bipyridyl
СОТ	1,3,5,7-cyclooctatetraene
Cp	cyclopentadienyl, C ₅ H ₅
Cp'	pentamethylcyclopentadienyl, C ₅ Me ₅
D	a 2-electron donor ligand such as a phosphine
DME	1,2-dimethoxyethane, sometimes called "glyme"
DMPE	1,2-bis(dimethylphosphino)ethane
DPPE	l,2-bis(diphenylphosphino)ethane
DPPM	bis(diphenylphosphino)methane
Et	ethyl, C ₂ H ₅ -
Fp	cyclopentadienyldicarbonyliron, CpFe(CO) ₂ -
Fp'	(pentamethylcyclopentadienyl)dicarbonyliron
HMP	hexamethylphosphorictriamide
LAH	lithium aluminum hydride
М	any transition metal other than iron
Me	methyl, CH ₃ -
MTHF	2-methyltetrahydrofuran
NMP	N-methyl-2-pyrrolidone
Ph, ϕ	phenyl, C ₆ H ₅ -
Pn	a pnicogen such as P, As, or Sb
Por	any porphyrin ligand coordinated as a dianion
PPN ⁺	Ph ₃ P=N=PPh ₃ ⁺
R	any unicovalent organic group such as methyl
TCNE	tetracyanoethene
Tf	triflate, F ₃ CSO ₂ O-
THF	tetrahydrofuran
x	any halogen

1. INTRODUCTION

In this Annual Review, I attempt to cover the organoiron chemistry reported in journals published during calendar year 1983. Organoiron compounds are those compounds which contain at least one C-Fe bond; however Fe-CN compounds are not included in this review, and properties and reactions of the simple iron carbonyls are not described exhaustively. Ferrocenes are treated in Annual Surveys by G. Marr and B. W. Rockett.

The material is organized more-or-less by the Gmelin system, first by increasing number of conjoined iron atoms, then by increasing hapticity of principal organic ligand. The latter is determined by the principle of last position. Thus, $(\eta^3-allyl)$ $(\eta^5-cyclopentadienyl)(\eta^2-ethene)$ iron would be treated with cyclopentadienyliron compounds rather than with allyl- or alkene-iron species. For conciseness, dimers such as dicyclopentadienyldiirontetracarbonyl [Fp₂, Cp₂Fe₂(CO)₄] are treated alongside their monomeric derivatives such as FpR, however, and FeM_n clusters are treated with other metal clusters.

2. REVIEWS AND BOOKS

Along with many reviews and books, not detailed here, dealing with general organometallic chemistry, appeared a review on uses of iron-arene complexes in organic synthesis¹. Part Bll of the current Gmelin organoiron series, dealing principally with CpFe(CO)DX, CpFe(CO)DR, and CpFe(CO)₂X compound types, was published².

3. REACTIONS OF "NAKED" IRON ATOMS AND IONS

Ground state $(3d^{6}4s^{2}, {}^{5}D_{4})$ iron atoms do not react with methane matrices, nor do Fe₂ molecules. Excitation (300 nm) of Fe atoms to the $3d^{7}4p^{1}$, ${}^{5}D_{4}$ state leads to rapid formation of CH₃FeH at 12 K³. Analogous photoinsertion into C-H bonds occurs with ethane and propane, but cyclopropane in argon matrices forms ferracyclobutane by C-C insertion⁴.

Iron atoms react in an ethylene matrix at <18 K to form $Fe(C_2H_4)$ at low concentrations and oligomers $Fe_n(C_2H_4)_n$ [n = 2,3,..] at higher concentrations. Propene gives analogous results⁵. Co-condensation of iron atoms with alkynes RCECR' results in formation of benzenes $C_6R_3R'_3$, cyclooctatetraenes 1,2,4,7- $C_8R_4R'_4$ and ferrocenes $FeC_{10}R_5R'_5$; the latter may be formed via metal-carbyne intermediates⁶.

Solvated iron atoms in MTHF at 140 K reduce $Mn_2(CO)_{10}$ to form $Fe(MTHF)_n^{+2} [Mn(CO)_5]_2$. In methylcyclohexane, Fe atoms react preferentially with toluene, forming (PhMe)₂Fe, rather than with $Mn_2(CO)_{10}$. But in MTHF, reaction 1 occurs slowly:

 $(PhMe)_{2}Fe + Mn_{2}(CO)_{10} \longrightarrow (PhMe)_{2}Fe^{+2} + 2 Mn(CO)_{5}^{-}$ (1)

 $[CpMo(CO)_3]_2$ is reduced analogously⁷.

An iron slurry from Li reduction of $FeCl_2$ in THF or DME reacts readily with C_6F_5X (X = Br, I) to yield solvated $(C_6F_5)_2Fe$ and Fe_2 . The former reacts with CO to give $(C_6F_5)_2Fe(CO)_2(DME)_2^8$.

Reactions of Fe⁺ ions with organics in the gas phase have been studied by ion-beam⁹, Fourier transform mass spectrometry¹⁰⁻¹², and ion-cyclotron resonance methods¹³. Reactions with H- and C-labelled alkanes reveal such processes as C-H and C-C bond insertions, β -alkyl and hydride transfers, and ferracyclobutane formation. Secondary and subsequent reactions of FeH⁺, Fe(CO)_n⁺, Fe(alkene)⁺ and Fe(butadiene)⁺ with hydrocarbons have also been studied¹²⁻¹⁴.

4. COMPOUNDS WITH η^1 -CARBON LIGANDS

a. Alkyl- and aryliron compounds

Reaction of phenyllithium with FeCl_3 gives $[\text{Ph}_4\text{Fe}]^{-4}$ [LiOEt₂⁺]₄ which reduces dinitrogen¹⁵. α -Naphthyllithium, in contrast gives $[(C_{10}H_7)_4\text{Fe}]^{-2}[\text{LiOEt}_2^+]_2$, which is unreactive toward dinitrogen¹⁶. Both tetraaryliron compounds were characterized by X-ray crystallography. The active Fe(0) compound has rectangular planar coordination of the four phenyl groups; the inactive Fe(II) compound shows distorted tetrahedral coordination of the α -naphthyl groups.

Dimesityliron(II) shows Lewis acid character, undergoing coordination with one (2,6-dimethylpyridine) or two (pyridine, benzonitrile) moles of Lewis base¹⁷. Reaction of 1 with triethylaluminum or ethylmagnesium bromide gave species, possibly from 2, capable of catalyzing Diels-Alder additions of dienes to alkynes and alkyne trimerization¹⁸.

A number of alkyl- and aryliron compounds have been prepared by reaction of tightly-coordinated iron chloride derivatives with alkyl- or aryllithium or Grignard reagents 19-21:

 $(Por)FeCl + RLi \longrightarrow (Por)Fe-R \leftarrow RX + (Por)Fe^{-1}$ (3)

(4)

 $(Por)FeCl + PhMgBr \longrightarrow (Por)Fe-Ph$

208

Reaction of hemoglobin or myoglobin with arylhydrazine, followed by separation from the protein matrix, gives the same aryl-iron porphyrin as reaction (4)²⁰. Reaction of various D_4FeCl_2 derivatives with methyllithium in ether gives $D_4Fe(CH_3)_2$; the donor ligands include trimethylphosphine, and $R_2PCH_2CH_2PR_2$ (R = Me, DMPE; R = Ph, DPPE). Both <u>cis</u> and <u>trans</u> dimethyl compounds form, depending upon the "bite" of the diphosphine ligand²¹.

Irradiation of $\underline{cis}-H_2Fe(DPPE)_2$ results in evolution of hydrogen, with formation of 3 (Scheme I)²².

The reactivity of 3 may indicate coexistence with a small amount of highly reactive, coordinatively unsaturated Fe(DPPE)₂.

4b. Iron monocarbonyls, e.g. D₄FeCO

Reduction of <u>trans</u>-FeH(\overline{CO}) (DPPE)₂⁺ by pulse radiolysis in methanol gives a persistent 17-electron species in which one DPPE ligand is monodentate²³.

Rates and equilibria for CO binding to iron(II) porphyrin models (Scheme II) have been studied extensively, in order better to define the effects of cavity size²⁴, axial base^{25,26}, Fe-CO bond strength²⁷, and electronic structure^{28,29} on the carbonylation of oxygen-carrier hemoproteins. A T₁ study of ¹³CO in 4 has been reported³⁰. Photodissociation of CO from 4 and other (Por)-Fe(CO) generates a voltage, which may be useful in solar energy conversion³¹.

A number of polydentate macrocyclic sulfur ligand-Fe(CO) complexes have been prepared by alkylation of coordinated dithiolates (Eq. 5). The CO ligand can be displaced by various Lewis

References p. 242

Protonation of $Fe(CO)_3(NO)^-$ in the presence of excess triphenylphosphine gives, inter alia, $(Ph_3P)_2FeH(CO)(NO)^{34}$, the crystal structure of which reveals a distorted trigonal bipyramid with the phosphines axial, but bent toward the hydride ligand³⁵.

Scheme II Porphyrin Structures

$$D = C_5 H_5 N$$
; Ref. 29

Refs. 24,25,27

4, $R_1 = CH_3$; $R_2 = CH = CH_2$; $R_3 = R_5 = R_6 = H$; $R_4 = CH_2CH_2CO_2CH_3$; $D = CH_3N$ N: Ref. 30 $R_1 = R_2 = R_4 = H$; $R_3 = R_5 = R_6 = (CH_3)_3CCONH$; D = Various $R_1 = R_2 = R_4 = H$; $R_3 = R_6 = (CH_3)_3CCONH$ $R_5 + D =$ NHCO(CH₂)₄N N:

$$R_1 = R_2 = R_4 = H; R_5 = (CH_3)_3 CCONH$$

 $R_3 =$

$$R_6 = 1,3,5-C_6H_3(CH_2)_{1-3}CONH$$

 $R_1 = R_2 = R_4 = H; R_3 + D = 0.C_6 H_4 NHCO(CH_2)_4]_2CHN$ $R_5 = R_6 = 0.C_6 H_4 NHCO(CH_2)_5 -]_2$ Ref. 26 Reaction of $Fe(CO)_NO^-$ with $Ph_2PNRCHMePh$ and ArN_2^+ gave the diastereomers of PhCH(Me)NRPPh_2Fe(CO)(NO)(NNAr), with a chiral iron atom³⁶. A similar compound (with Ph_3P) results from reaction of $(Ph_3P)_2Fe(CO)_2NNAr^+BF_4^-$ with $PPN^+NO_2^{-37}$. Displacement of CO from $Fe(CO)_2(NO)_2$ by a bicyclic aminophosphorane gives the monocyclic phosphine adduct (eq. 6).

$$\begin{array}{c} Ph & 0 \\ Ph & P \\ H & P \\ H & 0 \end{array} + Fe(CO)_2(NO)_2 \longrightarrow (ON)_2 FeP \\ FeP \\ Ph \\ Ph \end{array}$$
(6)

Likewise, $Ph_2PNHPPh_2$ gave $HN[PPh_2Fe(CO)(NO)_2]_2^{39}$.

4c. Iron dicarbonyls, e.g. D₃Fe(CO)₂

Much of the interest in compounds of this type lies in the novelty of the ligands D. A number of compounds $(R_3P)_2Fe(CO)_2D$ with heterocumulene ligands have been reported on during 1983. The ligands have included isothiocyanates (RNCS)⁴⁰, carbon disulfide⁴¹, sulfinylanilines (ArNSO)⁴², and sulfur dioxide⁴³. All but the latter show η^2 -coordination, using the C=S or N=S bond. Some of the observed reactions are summarized in Scheme III.

211

Displacement of triphenylphosphine or CO from $(Ph_3P)_2Fe-(CO)_2Br_2$ by isocyanides has been studied; reduction by sodium amalgam in the presence of excess ligand D gave $(Ph_3)_2Fe(CO)_2D^{44}$. Reaction of lithium 2-(methylthio)benzenethiolate with $Ph_3PFe-(CO)_3I_2$ gives $[\Omega-C_6H_4(SCH_3)S]_2Fe(CO)_2$, 5, and its monophosphine analog. Although phenyllithium attacks a CO group of 5, it attacks the Fe atom of a macrocyclic analog 6. (eqs. 7 and 8)

 $Li^{+}HBEt_{3}^{-}$, however, converts 6 to a formyl compound 45.

Mössbauer studies of (Por)Fe(CO)₂ have been reported⁴⁶. A series of (Por)Fe(CNR)₂ have been prepared, including a polymeric one from use of $p-C_6H_4(NC)_2^{47}$.

"Insertion" reactions of $(Me_3P)_2Fe(CO)_2(Me)X$, 7, have been studied by different groups, sometimes with different results. Reaction of 7 (X = I, CN, CH₃, CNBPh₃) with ¹³CO was reported to give the product with ¹³CO cis to the acetyl group in one case⁴⁸ and trans in another case, with X = CN^{49,50}. With X = I, the initially formed product rearranges via ionization^{48,50}. "Insertion" of Me₃NC proceeds as in eq. 9; the η^2 -iminoacyl product was crystallographically characterized⁵¹.

4d. Iron tricarbonyls, e.g. D₂Fe(CO)₃

"Insertion" reactions of the ionic complexes $(Me_3P)_2Fe-(CO)_3CH_3^+$ occur less readily than in the just-discussed neutral $(Me_3P)_2Fe(CO)_2(CH_3)X$ and are accompanied by ligand exchange of D for CO^{50} . For reaction 10, kinetic study shows first-order dependence on the substrate and zero order in phosphite, consistent

with the dissociative mechanism shown⁵².Likewise substitution of CO for D in $D_2Fe(CO)_3$ at temperatures above 100° occurs by initial dissociation of D, with lability order $Ph_3As>Ph_3P>(PhO)_3P>CO^{53}$. Conditions for separating $D_2Fe(CO)_3$ and $D_3Fe(CO)_2$ mixtures (D = various trialkylphosphites) by HPLC have been optimized⁵⁴.

The 17-electron radical-cation $(Ph_3P)_2Fe(CO)_3$ ⁺ has been generated electrochemically and studied by ESR. In coordinating solvents it disproportionates to $(Ph_3P)_2Fe(CO)_3$ and solvated Fe^{++55} .

Reaction of $Fe(CO)_5$ or $Fe_3(CO)_{12}$ with $PPN^+NO_2^-$ in THF at room temp. affords a convenient synthesis of $PPN^+Fe(CO)_3NO^-$ and certain other metal nitrosyl carbonyls^{37,56}. The route of eq. 11 was suggested.

$$Fe(CO)_{5} + NO_{2}^{-} \rightarrow (OC)_{4}Fe^{-C} \rightarrow (OC)_{3} Fe^{-C}O_{2}^{-} \rightarrow (OC)_{3}Fe^{-C}O_{2}^{-} \rightarrow (OC)_{3}Fe^{-C}O_{1}^{-} \rightarrow (OC)_{1}^{-} \rightarrow (OC)_{1}^{-}$$

The crystal structures of PPN⁺Fe(CO)₃NO^{- 57}, $(CH_3NC)_2Fe(CO)_3^{58}$, (RN NR)Fe(CO)₃, 8, R = (59) have been reported. Cycloaddition of the diazaferrole 9, in which the diazene functions as a 3-electron ligand, to dienes occurs as in eq. 12⁶⁰.

4e. Iron Tetracarbonyls, e.g. $DFe(CO)_4$ and $R_2Fe(CO)_4$

A number of species DFe(CO)₄ have been prepared and characterized, which have novel phosphine ligands. These include substances with D = PhPCl₂⁶⁰, $F_2PN(CH_3)PF_2^{61}$, $CH_3NHPF_2^{61}$, $(RO)_xPF_{3-x}$ [x = 1-3, R = C(CF₃)₂CN]⁶², and (OC)₃Mo(F₂PNPh)₃P⁶³. Reaction of Cl₂PN(SiMe₃)₂, Cl₂AsN(SiMe₃)₂, and Cl₂PCH(SiMe₃)₂ with Na₂Fe(CO)₄ gave the phosphinidene (or the arsinidene) complexes,

$$(O C)_{4}^{Fe} P = P F_{Fe(CO)_{4}}^{Y(SiMe_{3})_{2}} Y = N, CH$$

which were characterized by X-ray crystallography^{64,65}. $(\eta^1 - DPPE)Fe(CO)_4$ has also been characterized crystallographically⁶⁶. Axial-equatorial isomerism in solutions of Ph₃PnFe(CO)₄ and (RO)₂PFFe(CO)₄ have been studied^{62,67}.

The photoelectron spectra of $H_2Fe(CO)_4^{68}$ and $Br_2Fe(CO)_4^{69}$ have been interpreted by means of the Green's function formalism. Photodissociation of $H_2Fe(CO)_4$ has been interpreted through state correlation diagrams⁷⁰.

 $(Me_3SiNC)_4FeI_2$ has been prepared and characterized⁷¹. $(CF_3CF_2CF_2)_2Fe(CO)_4$ results from reaction of $C_3F_7Fe(CO)_4I$ with $Hg[N(CF_3)_2]_2$ and from pyrolysis of $C_3F_7Fe(CO)_4OCOCF_3$. Reaction of the iodide with HgF₂ produces $[C_3F_7Fe(CO)_4]_2Hg$ and $C_3F_7Fe^{-1}(CO)_4HgC_3F_7^{72}$. Mild reduction of $[MFe(CO)_4]_x$ polymers (M = Zn, Cd, Hg) gives $M[Fe(CO)_4]_2^{-2}$, which are further reduced to $Fe_2(CO)_8^{-2}$. The crystal structures of $[Na(THF)_2]_2^+$ $M[Fe(CO)_4]_2^{-2}$ have been determined. $Zn[Fe(CO)_4]_2^{-2}$ reacts with HgCl₂ to yield $Fe(CO)_4(HgCl)_2^{73}$.

The HFe(CO)₄⁻ ion can be incorporated in an ion-exchange resin and used to reduce nitroarenes and 1,2-dibromoalkanes⁷⁴. The bimetallic formyl complexes $M_2(CO)_9$ CHO⁻ (M = Mn, Re) reduce Fe(CO)₅ to Fe(CO)₄CHO⁻ ⁷⁵. Na₂Fe(CO)₄ opens the ring of diethyl 1,1-cyclopropanedicarboxylate (eq. 13)⁷⁶.

$$Fe(CO)_{4}^{-2} + (CO_{2}Et)_{2} \longrightarrow (OC)_{4}FeCH_{2}CH_{2}C(CO_{2}Et)_{2}$$

$$\downarrow E-X \qquad (13)$$

$$ECOCH_{2}CH_{2}C(E)(CO_{2}Et)_{2}$$

 $E-X = H-OAC, CH_3-I$

Ring opening also results upon reaction of 4-(iodomethyl) azetidine-2-ones with $K_2Fe(CO)_4$, probably as a result of single electron transfer⁷⁷.

4f Carbene complexes, e.g. R₂C=Fe(CO)₄

Reaction of the N,N'-bridged tetraphenylporphyrin 10 with $Fe_3(CO)_{12}$ results in migration of the vinylidene group from the nitrogens to the iron (eq. 15)⁷⁸. Electrochemical reduction of (Por)Fe=C=CR₂ and (Por)FeCS leads to vinyl and thioformyl com-

214

plexes. $PorFe=CCl_2$ undergoes dehalogenation to give $(PorFe)_2=C$, which reduces in turn with cleavage of the Fe=C bonds⁷⁹. SCF molecular orbital calculations on (OC)₄Fe=CHOH predict a 2.00 A. bond length for the Fe=C bond, and a 37 kcal/mol bond strength, with the carbene ligand preferentially in the axial position of the iron trigonal bipyramid. Electrophilic reactivity is frontier orbital-controlled⁸⁰.

Aldehydes can be converted to carbene complexes (trapped as phosphine adducts) in one step by reaction with a ferradisilole (eq. 16)⁸¹. Cyclopropanes were not formed in the presence of ex-

$$\begin{array}{c} O \\ RCH + >Si \\ Fe \\ (CO)_{4} \end{array} \xrightarrow{Si} >Si \\ Si \\ Si \\ Si \\ + \left[(OC)_{4} Fe = CHR \right]$$
(16)

cess isobutylene⁸¹. Alkylation of $(OC)_4$ Fe=C(R)O⁻ to form alkoxycarbene complexes has been studied systematically; O-alkylation is favored by ethyl rather than methyl alkylating agent, hard leaving groups, and HMP in the solution⁸². But methylation of $(OC)_4$ FeCO₂Me⁻ with methyl triflate at -78^o gives the Fe-Me product, which decomposes to methyl acetate at room temp.⁸³ Reaction of alkoxycarbene complexes with alkenes results in formation of one new C-C bond rather than two (eq. 17). Mechanistic possibilities include a ferracyclobutane⁸⁴.

 $(OC)_4$ Fe=C(OEt)Ph + CH₂=CHR \longrightarrow PhCH(OEt)CH=CHR + PhC(OEt)=CH₂R

The dithiocarbene complex previously shown in Scheme III decomposes thermally or on reaction with I_2 to a tetrathiafulvalene. A dicarbene-FeD₃ is a possible intermediate⁴¹. A novel dicarbene complex arises when (bpy)₂Fe(CNMe)₂⁺² reacts with hydrazine (eq. 18)⁸⁵. MeNH

$$(bpy)_2 Fe(CNMe)_2^{+2} + H_2NNH_2 \longrightarrow (bpy)_2 Fe$$

MeNH (18)

(17)

4g. Selected organic reactions of iron carbonyls

Most reactions involving simple iron carbonyls are discussed in this survey under the heading appropriate to the products. Here, I discuss some miscellaneous reactions and properties of iron carbonyls, which do not fit into other sections but deserve to be noted.

Iron pentacarbonyl in refluxing toluene has been used to desulfurize a dithiaparacyclophane (eq. 19)⁸⁶, and to couple benzoyl chloride to <u>cis</u> and <u>trans</u> $[PhCOOC(Ph)=]_2^{87}$. Under phase transfer conditions, benzyl halides have been carbonylated to form arylacetic acids in the presence of iron pentacarbonyl⁸⁸.

 γ -Radiolysis of $\text{Fe}(\text{CO})_5$ in MTHF at 77 K gave $\text{Fe}(\text{CO})_5^{\circ-}$ and $\text{Fe}(\text{CO})_4^{\circ-}$. $\text{Fe}_3(\text{CO})_{12}$ likewise gave its radical-anion⁸⁹. Reduction of $\text{Fe}(\text{CO})_5$ or $\text{Fe}_3(\text{CO})_{12}$ with azole anions gave $\text{Fe}_2(\text{CO})_8^{\circ-90}$. Ultrasonication of iron carbonyl solution induces substitution of CO by ligands such as phosphines, probably via coordinatively unsaturated intermediates⁹¹. Pulsed UV photolysis of $\text{Fe}(\text{CO})_5$ in the gas phase, with infrared detection, has allowed identification of Fe(CO)_x transients (x = 2-4)⁹²; the Fe(CO)₄ appears to have the same C_{2v} geometry as previously found in matrix studies. Photoreaction of Fe(CO)₅ with CCl₄ in the presence of Ph₃P has been followed by ESR⁹³. Fe(CO)₅ catalyzed, under photolytic conditions, isomerization of CH₂=CH(CH₂)_nNR₂ to the enamines CH₃(CH₂)CH=CHNR₂ (n = 1,3; R = Me₃Si)⁹⁴.

5. η^2 -ALKENE COMPLEXES

The X-ray photoelectron spectrum of (ethylene)tetracarbonyliron, 11, has been reported and interpreted as showing negative charge on the ethylene⁹⁵. Fenske-Hall calculations on 11 have been reported⁹⁶. Photolysis of 11 in alkane matrices at 77 K produces the unsaturated (ethylene)tricarbonyliron. Alkenes with allylic hydrogens give the HFe(CO)₃(allyl) products instead. Warming of the matrices results in formation of dinuclear species $[C_2H_4(OC)_3Fe=J_2$, which actively catalyze hydrogen shifts in added alkenes⁹⁷.

Reaction of Fe(acac)₃ with Et₂AlOEt in the presence of PhPMe₂ at low temp. gave the bis(ethylene)trisphosphineiron(0) product⁹⁸. Reduction of Fe(CO)₂(PPh₃)₂Br₂ with sodium amalgam in the presence of diphenylacetylene gave the η^2 -alkyne complex Ph₂C₂Fe(CO)₂(PPh₃)₂⁴⁴. A series of (cycloalkene)tetracarbonyl-

iron complexes has been prepared for study of the carbonyl group exchange process⁹⁹. The diazadiene complexes 8 (R = Me₂CH and others) react with dimethyl acetylenedicarboxylate to give pyrrolinone complexes such as 12¹⁰⁰.

Reaction of $(C_{3}H_{5})Fe(CO)_{3}I$ with salts of di- and triazoles gives a variety of products, including in several cases coordinated N-allyl azoles such as 13^{101} . Reaction of (C₃H₅)Fe(CO)(NO)D derivatives with sodium borohydride gives propene derivatives along with Fe(NO) $_2D_2$ and salts such as Fe(CO)(NO) D_2^{-102} . Reaction of substituted ally1-Fe(CO) cations (from protonation of diene-Fe(CO)₃ complexes in the presence of excess CO) with phosphines gives allylic phosphonium salts useful in synthesis¹⁰³.

Reaction of bicyclo[5.1.0]octadienyl-Fe(CO)₂D⁺ with iodide ion results in ring-opening to form $(3-5)\eta^3$ -cyclooctatrienyl- $Fe(CO)_{2}DI$ (D = trimethylphosphite)¹⁰⁴. Reaction of dimethylaniline with $C_{A}H_{A}Fe(CO)_{2}NO^{+}$ gives an η^{3} -cyclobutenyl complex with an exo-4-dimethylaminophenyl substituent, characterized crystallographically¹⁰⁵.

A complete report on the first η^3 -cyclopropenyl complex of iron, Ph₃C₃Fe(CO)₂NO, including an X-ray structure, has now appeared 106.

7. COMPOUNDS WITH χ^4 -LIGANDS

a. Compounds with non-contiguous n^4 -coordination

 $(\eta^5$ -Cycloheptadienyl)Fe(CO)₂PPh₃⁺ reacts with methyllithium at C-2, giving 14. Me₂CuLi causes methylation at C-1¹⁰⁷. A crystal structure of 15 has been published 108 .

A lactam complex homologous with 15 was obtained by reaction of a lactone complex with benzylamine (eq. 21)¹⁰⁹. Oxidative de-

composition gave a β -lactam. Triphenylphosphine attacks the tricarbonyl(1-3:5,6) η^5 -cyclooctadienylium cation at C-5, forming a (1-3,6) η^4 -coordinated phosphonium ion¹¹⁰. A study of photocleavage and isomerization of 16 has indicated the reactions shown in Scheme IV¹¹¹.

7b. 7⁴-Trimethylenemethyl Complexes

The mechanism of oxidative demetalation of (2-methylenecyclopentane-1,3-diyl)tricarbonyliron has been studied, with the conclusion that the free ligand is generated and trapped in its triplet ground state; at higher concentrations some trapping product may derive from interception of an oxidized iron intermediate¹¹². Green's function calculations on $[(CH_2)_3C]Fe(CO)_3$, $C_4H_4Fe(CO)_3$, 17, and other organometallics in the ground and ionized states have been reported¹¹³.

<u>7c.</u> η^{4} <u>-Cyclobutadiene</u> Complexes

MO Calculations on 17 have been undertaken, for the purpose of better understanding C-C bond alternation¹¹⁴ and the ionic states observed in photoelectron spectroscopy^{113,115}. Nematicphase NMR studies of $(C_4H_3X)Fe(CO)_3$ indicate transient rhombic deformations of a time-average square planar ligand¹¹⁶.

Photolysis of $C_4Me_4Fe(CO)_3$ gives a dimer with a triply CObridged Fe-Fe triple bond. Photolysis of a mixture containing $C_5Me_5Mn(CO)_3$ gave the analog with a Fe-Mn triple bond, 18^{117} . 19 results upon methylation of the corresponding oxocyclobutenyl complex¹⁰⁶.

An X-ray structure of (benzocyclobutadiene) $Fe(CO)_2PPh_3$ has been published¹¹⁸. Free bicyclo[6.2.0]decapentaene has been obtained through its $Fe(CO)_3$ complex (eq. 22)¹¹⁹.

7d. 4-Cyclopentadiene Complexes

P-H coupling constants can be used to determine the stereochemistry of $(5-RC_5H_5)Fe(CO)_2PPh_3$ and related complexes¹²⁰. CpFe(DPPE)CHO rearranges at 90° to $(\eta^4-C_5H_6)Fe(DPPE)CO^{121}$.

Field-desorption mass spectrometry of (cyclopentadienone)Fe(CO)₃ and other organometallics reveals intense molecular ion peaks¹²³. A novel cyclopentadienone complex was obtained, <u>inter alia</u>, from reaction of the diacetylene (PhC=CC₆H₄)₂PPh with iron carbonyls¹²².

Iron tricarbonyl complexes of 1,1-dimethylsilole, 1,1,3,4tetramethylsilole, and 1,1-dimethylgermole have been obtained by reaction of the heterocycles with iron carbonyls^{124,125}.

7e.m⁴-Cyclohexadiene Complexes

Tertiary allylic cyclohexenols have been converted directly to (cyclohexadiene)tricarbonyliron complexes upon reaction with iron pentacarbonyl in refluxing dibutyl ether¹²⁶. Cross-conjugated cyclohexadienones yielded cyclohexadien-2-ol complexes upon treatment with Fe₂(CO)₉ in benzene/THF containing water and hydroxide ion¹²⁷. (eq. 23)

The Fe(CO)₃ complex of 6-methoxy-2-pyrone resulted from reaction of 2-methoxyfuran with Fe₂(CO)₉¹²⁸. Dehydro- β -ionone gave two iron tricarbonyl products and an unusual iron dicarbonyl (eq. 24).

Product 20 was favored kinetically; 21 thermodynamically¹²⁹.

Reactions of (cyclohexadiene)iron tricarbonyl with carbanions have been intensively studied; the intermediates can be protonated to give substituted cyclohexenes as mixtures of isomers, but trapping with other electrophiles was not generally successful. Alkyllithium reagents attacked carbonyls rather than the coordinated diene¹³⁰. Nucleophilic attack in the presence of CO led to carbonylated products (eq. 25) in good yields¹³¹, suggesting attack by the carbanion at C-2 of the coordinated digne.

Substituted cyclohexadiene complexes are often produced by quenching a (cyclohexadienyl)tricarbonyliron salt with a nucleophile, a reaction much studied for its synthetic potential. That such nucleophilic attacks may be less straightforward than they seem is suggested by evidence that reaction of $C_6H_7Fe(CO)_3^+$ with hydroxide ion to give the 1,3-cyclohexadien-5-ol complex occurs through a $(C_6H_7)Fe(CO)_2CO_2H$ intermediate¹³². Carbanionic nucleophiles whose reactions with cyclohexadienyliron cations have been reported include $BrZnCH_2CO_2Me^{133}$, aryltrimethylsilanes, stannanes and the like¹³⁴, enolates such as $KCH(CO_2Me)_2^{135}$ and trimethylsilylethyl ester enolates¹³⁶, from which the ester group is readily removed. An intramolecular nucleophilic attack (eq. 26) gave a product whose structure has been confirmed¹³⁷:

Fluxional behavior of $(\eta^4$ -cycloheptatriene)tricarbonyliron derivatives has continued to draw interest. An X-ray structure of the 7-<u>exo</u>-(triphenylgermyl) derivative (G^{\neq} for fluxional shift 74 kJ/mol) has shown the Fe(CO)₃ group shifted away from C-l as a consequence of the electron-donating effect of the C-Ge bond¹³⁸. The fluxional shift appears to involve a symmetrical intermediate which may be considered a 2-5 η^4 -structure, 22, stabilized by interaction with the germyl group¹³⁹. He I and II photoelectron spectra have been interpreted in terms of strengthened diene-iron interaction in the ground state due to the electron-donating effect of the germyl group, and comparative isolation of the free

Complexation of 3,7,7-trimethylcycloheptatriene with iron carbonyls gives only the 1-4 η^4 -Fe(CO)₃ product. Reaction with TCNE gives adducts across the 4,6- and 1,6-positions, in 4:1 ratio. Reaction with diphenylketene gives a [2 + 2] adduct¹⁴¹. These results may be readily interpreted in terms of zwitterions resulting from electrophilic attack at C-6.

Phase transfer-generated dichlorocarbene adds to the <u>anti</u> faces of the free double bonds of (cycloheptatriene)- and (Ncarbethoxyazepine)tricarbonyliron. Reaction of the cyclopropane products with <u>Q</u>-chloranil gave spiroheterocyclic products 23, probably as a result of single electron transfer, cyclopropane ring opening, chloranil insertion, and decomplexation¹⁴². Heating substituted (4-7) η -1-vinylcycloheptatriene)tricarbonyliron complexes resulted in disproportionation to <u>anti</u>-bis Fe(CO)₃ complexes; only the styryl compound gave a bond-shift isomer¹⁴³. (Cycloheptatriene)tricarbonyliron reacts with <u>p</u>-nitrobenzenediazonium salts in the manner of other electrophiles, giving the η^{5} cycloheptadienylium salt by attack at C-6. Deprotonation gave the <u>syn-</u> and <u>anti</u>-arylhydrazones of (tropone)tricarbonyliron¹⁴⁴.

7g. Cyclooctatetraene complexes

 13 C-NMR magnetization transfer experiments on COTFe(CO)₂D, having $D = NCCHMe_2$, indicated the Woodward-Hoffmann allowed mechanism for 1,2-shifts in this fluxional species 145. Photolysis of COTFe(CO)₃, 24, in a methane matrix at 12 K gives species thought on the basis of FT IR studies to be $(\eta^2 - \text{COT})\text{Fe}(\text{CO})_3$, which can return to 24 or an isomer with a chair conformation of the COT (COT)Fe(CO)₂ was also detected; a η^4 - structure rather than ring. the closed-shell η^6 -structure was indicated ¹⁴⁶. Reaction of 24 with arenediazonium ions led to (8-arylbicyclo[5.1.0]octadienyl)Fe(CO)₃⁺, which was deprotonated to give arylated 24. In contrast, derivatives of 24 having one or two CO's replaced by trimethylphosphite gave arylazocyclooctatrienyl complexes. Arylation was proposed to result from initial electrophilic attack at Fe, and azo coupling from initial attack on the ring 147 .

A compound assigned the structure (3,4,7,8-tetrachlorocyc-loocta-1,5-diene)tricarbonyliron has been reported as formed (along with the expected diene complex) upon reaction of <u>trans</u>, <u>trans</u>-1,4-dichlorobutadiene with Fe(CO)₅¹⁴⁸.

7h. Acyclic diene complexes

Vibrational spectra of butadienetricarbonyliron have revealed discrete rotamers in the liquid state¹⁴⁹. Fe(CO)₃ complexes of several dienes (Scheme V) have been obtained by reaction of the corresponding dienes with iron carbonyls.

Other diene complexes have been obtained in reactions invol-Scheme V

Some Newly Reported Diene Complexes

ving hydrogen rearrangements. Thus, reaction of bi-2,7-cyclooctadienyl with $\text{Fe}_3(\text{CO})_{12}$ gave 25^{154} , and reaction of <u>cis</u>-polybutadiene with $\text{Fe}(\text{CO})_5$ gave a polymer with 1,3-diene units in the chain^{155,156}. A number of studies dealing with complexation of derivatives of 1,2-dimethylenecyclohexane have appeared. Reaction of 5,6-dimethylene-7-oxabicyclo[2.2.1]hept-2-ene with Fe₂(CO)₉ proceeded with dimerization and deoxygenation to give 26^{157} . The

presence of Fe(CO)₃ groups coordinated to the <u>cis</u>-butadiene units of tetramethylenebicyclo[2.2.2]octene¹⁵⁸, tetramethylenebicyclo-[2.2.2]octan-2-ol and -2-one^{160,159}, and hexamethylenebicyclo-[2.2.2]octane¹⁶⁰ has curious and sometimes unpredictable effects on the stereochemical outcomes and rates of reactions. An example is given in reaction 27^{159} .

The use of alkaline hydrogen peroxide in methanol has been recommended as a mild method for decomplexation of diene complex-es¹⁶¹. Wittig reactions have continued to be used to elaborate diene complexes, as in eqs. 28^{103} , 162 and 29^{163} .

Reaction of butadiene complexes with reactive carbanions R⁻ under CO pressure, gives 3-R cyclopentanones in good yield¹⁶⁴. The mechanism involves R⁻ attack on the 2-position of the coordinated diene.

Photolysis of 8 in Ar or CO matrices at 10 K results in formation of the heterodiene π -complex¹⁶⁵. Irradiation of DFe(CO)₄ or D₂Fe(CO)₃ (D = various phosphines) in the presence of benzylideneacetone in benzene gave (benzylideneacetone)carbonylphosphineiron[0] complexes, two of whose crystal structures have been determined¹⁶⁶.

8. η^{5} -DIENYL COMPLEXES

a. Compounds with open pentadienyl ligands

A molecular orbital study has compared the cyclopentadienyl-, cyclohexadienyl-, and cycloheptadienyl-tricarbonyliron cations' rotational conformations and ligand planarity¹⁶⁷. A number of reactions of (cyclohexadienyl)Fe(CO)₃ cations with nucleophiles, to give cyclohexadiene complexes, were already mentioned in Section 7e. To enhance the synthetic utility of these reactions, two groups have undertaken resolution of (2-methoxycyclohexadienyl)tricarbonyliron cation, by means of attachment of a chiral nucleophile, forming separable diastereomeric diene complexes, from which the resolved salt could be regenerated^{168,169}. The salt could also be methylated by an indirect sequence, giving the enantiomerically pure (2-methoxy-5-methylcyclohexadienyl)tricarbonyliron cation¹⁷⁰.

Nucleophiles attack the $(1-3:5,6\eta^5$ -cyclooctadienyl)tricarbonyliron cation variously at C-5 or at the iron¹¹⁰. Halide ions attack a methyl group of the cyclooctatrienyl cation 27, giving a coordinated phosphonate ion¹⁰⁴.

A full paper on synthesis and properties of bis(pentadienyl)iron and several methylated derivatives has appeared¹⁷¹. The red, air-stable compounds resemble ferrocenes. An X-ray structure shows a gauche, eclipsed ligand conformation. Reaction with PF_3 gave $Fe(PF_3)_5^{172}$.

8b. Cyclopentadienyldicarbonyliron hydride and related compounds

The remainder of Section 8 of this Review deals with the extensive families of compounds containing the cyclopentadienyldicarbonyliron (Fp) group, along with the closely related compounds in which one or both CO ligands is replaced by a phosphine or phosphite and/or the Cp ligand is replaced by a C_5Me_5 . These are discussed together in this Section, ordered according to the other element to which the Fp group is attached. This section will discuss consecutively compounds of the types Fp-H, Fp₂, Fpmetal, and then compounds with bonds from the Fp group to elements of groups IV, V, VI and VII, respectively. Section 8c. will deal with organic derivatives, FpR, and cyclopentadienyliron compounds with organic ligands of higher hapticity.

 57 Fe chemical shift and 57 Fe $^{-13}$ C coupling constant data have been reported for a number of FpX compounds (X = halogens and organic groups) 173 .

Reduction of Fp'CO⁺ with aq. NaBH₄ at 0^o or aq. THF at 20^o gave Fp'H, 28¹⁷⁴. The same hydride could be obtained by protonation of Na⁺Fp'⁻ with acetic acid¹⁷⁵. One CO of 28 is readily displaced by Me₃P; the resulting hydride is deprotonated by the ylide Me₃P=CH₂¹⁷⁵. LAH reduction of CpFe(DPPE)CO⁺ gives CpFeH(CO)(DPPE), which disproportionates to DPPE and (DPPE)[FeH(CO)Cp]₂. The latter loses H₂ upon photolysis or heating to 90^o 176,177.

Differential thermal analysis has been applied to the thermolysis of the dimer F_{P_2} at 170-270^o ¹⁷⁸. F_{P_2} catalyzes exchange of isonitrile ligands for CO in FpX derivatives and other organometallics¹⁷⁹. The ylide $C_{P_3}UCH=PR_3$ reacts with F_{P_2} by attack at and reductive coupling of carbonyls, giving 29^{180} . Reaction of F_{P_2} with strong acids HX in acetonitrile results in cleavage to $FpNCMe^+x^-$ or FpX^{181} . In methylene chloride, isolable $Fp-H-Fp^+x^-$ results¹⁸². Sulfuryl chloride, SO_2Cl_2 , in benzene converts Fp_2 to $FpCO^+FeCl_4^{-183}$.

Photolysis of Fp₂ in matrices at 12 K results in formation of triply-bridged 30^{184} . (cf. 18) Formation of 30 would economically explain the formation of monosubstitution products Cp₂Fe₂(CO)₃PR₃ on photolysis of Fp₂ in the presence of phosphines, but a recent mechanistic study has instead suggested an open intermediate, FpC(0)Fe(CO)Cp¹⁸⁵. Photoreaction of Fp₂ with chlorinated solvents to give FpCl involves Fp^{*} radicals.

Isonitriles displace all four CO ligands from Fp₂ in boiling xylene; the μ -CNR ligands are quite basic¹⁸⁶. Mössbauer studies of Fp₂, and its μ -CNR and μ -CNHR⁺ analogs reveal the μ -CNHR⁺ ligand to be a powerful acceptor¹⁸⁷. Oxidation with silver ion of Fp₂ and its isonitrile substitution analogs has been studied in acetonitrile and THF¹⁸⁸.

Two analogs of Fp_2 having the cyclopentadienyl rings joined by bridges have been reported. One has a $-SiMe_2CH_2CH_2SiMe_2$ bridge¹⁸⁹, and the other a $-SiMe_2$ - bridge^{190,191}. The reactions reported are qualitatively normal. X-ray structures of the diiodide from the latter¹⁹⁰, as well as structures of two diphosphine-bridged substitution products¹⁹¹, were reported. Reaction of K^+Fp^- with Cp_2ZrXCl gave Cp_2ZrXFp (X = Me, O-t-Bu)¹⁹². Reaction with Fp_2M (M = Zn, Cd, Hg) gave Fp_3M^- salts; the tetrabutyl ammonium zincate salt was characterized by X-ray crystallography¹⁹³.

Displacement of chloride from chlorosilanes has continued to find use for preparation of silyl-Fp compounds. Thus, RSiHCl₂ gives FpSiHRCl, which reacts with CCl₄ to give FpSiRCl₂. The latter forms FpSiRF₂ upon reaction with AgBF₄¹⁹⁴. The crystal structure of FpSiMe₂SiPh₃ shows a slightly elongated Si-Si bond ¹⁹⁵. The iron-silicon bond of FpSiMe₃ is cleaved using fluoride ion in THF¹⁹⁶. Reaction of FpSiMe₂Cl with LiNMe₂ gave the expected FpSiMe₂NMe₂ and also the dimeric $(C_5H_4SiMe_2NMe_2)_2Fe_2(CO)_4$, from an anionic shift of the aminosilyl group from the iron to the cyclopentadienyl ring. Several additional examples of such shifts were adduced 197. Reaction of FpSnCl₃ with Na₂WO₄ in the presence of NaH_2PO_4 resulted in displacement of the chlorides from the silicon to give a complex phosphotungstate, $(FpSn)_2W_{10}PO_{38}^{-5}$ ¹⁹⁸. Electrochemical reduction of FpMPh₃ (M = Si, Ge, and Sn) gave esr-observable anion radicals; further reduction led to cleavage of the Fe-M bonds¹⁹⁹. Reaction of Fp_2 with GeF_2 gave $Fp_2GeF_2^{200}$.

An X-ray study of N3-Fp 1,2,3-triazole cation has been reported²⁰¹. Photolysis of FpP(OH)₂⁺ in aqueous solution gave the compound 31, whose X-ray structure has been determined²⁰². Heating 32 in xylene resulted in CO loss, with formation of 2,5diphenylphosphaferrocene in low yield²⁰³. Photolysis of FpCO⁺ in

acetonitrile solutions containing 3,4-dimethyl-1-phenylphosphole gave the cyclopentadienyltris(phosphole)iron cation²⁰⁴. Analogous cations have resulted from reaction of Fp(isobutylene)⁺ with chelating tri- and tetraphosphines, followed by thermolysis or photolysis. Reduction with LAH gave Fe-H species²⁰⁵. X-ray structures of FpPPh₃⁺ and CpFe(CO)(DPPE)⁺ have been published¹¹⁸.

Several compounds with cyclotriphosphazene-Fp linkages have been reported, including crystal structures^{206,207}.

Reaction of NaFp and NaFp' with $ClAsR_2$ (R = Me, Me₃C) gave the metathetical products Fp(')AsR₂. Several reactions demonstrated the expected Lewis base character of the products²⁰⁸. Reaction of Cp(CO)(PMe₃)FePnMe₂ with (norbornadiene)Mo(CO)₄ gave the diastereomeric products [Cp(CO)(PMe₃)FePnMe₂]₂Mo(CO)₄, with Pn = As, Sb, and Bi²⁰⁹. FpSbBr₂ shows Lewis acid character in its reaction with PMe_3 , forming $FpSbBr_2PMe_3$, which was crystallographically characterized²¹⁰.

Crystal structures of $FpOH_2^+ Ph_4B^- 211$ and $Fp'OSO_2CF_3^{212}$ have been reported. Oxidation of FpSPh or Fp'SPh gave $FpS(Ph)S(Ph)Fp^{2+}$ or the Fp' analog, which could also be obtained directly from PhSSPh and $Fp(THF)^+ 213$. Ethylation of $CpFeCO(PR_3)SPh$ with EtBr gave the expected sulfonium salts $CpFeCO(PR_3)S(Ph)Et^+$ Br⁻, which underwent slow conversion to $CpFeCO(PR_3)Br$ and PhSEt. In the case of FpSPh and Fp'SPh, the FpBr was formed directly²¹⁴. Organoiron polysulfides FpS_xFp were prepared from NaFp and SCl_2 or S_2Cl_2 , Fp_2 and elemental sulfur, and other methods. The X-ray structures of the tri- and tetrasulfides were determined²¹⁵.

Photochemical reaction of FpI with trialkyl phosphites gave CpFe[P(OR)₃]₂I²¹⁶. γ -Radiolysis of FpCl or FpI at 77 K gave radical-anions with large hyperfine couplings to the halogens, indicating population of the Fe-X π^* -orbitals. Annealing appeared to give Fp^{• 217}.

8c.Fp-Acyl, Alkyl, and Carbene Complexes

Carbonylation of CpFe(CO)(PPh₃)Me to form the acetyl-Fe product is very strongly catalyzed by oxidizing agents; a mechanistic study has revealed that methyl migration is at least 10^7 faster in the oxidized Fe(III) species than in the Fe(II)²¹⁸. Thermal reaction of FpMe with RPPh₂ (R contains an aza-crown ether grouping) gave the acetyl-iron product, whereas photoreaction gave the methyl-iron product. A comparison of binding constants for the two compounds implicated the acyl oxygen as a significant participant in cation binding²¹⁹. Reaction of FpMe with Ph₂PNRAlR₂ proceeded as shown in eq. 30^{220} . Further illustration of the Lewis

$$CpFe(CO)_{2}Me + Ph_{2}PNAIR_{2} \longrightarrow O^{C}_{P-N} AIR_{2} + CP + CP + O^{AIR_{2}}_{CP} AIR_{2} + Fe + CP + O^{AIR_{2}}_{CP} AIR_{2} + CP + O^{AIR_{2}}_{Ph_{2}} AIR_{2} + O^{C}_{P-N} AIR_{2} + O^{C}_{Ph_{2}} AIR_{2} + O^{C}$$

base property of FpCOMe comes from the formation of stable $FpC(Me)O-Mo(CO)_3Cp^+$ salts (X-ray) from reaction of either FpMe or FpCOMe with $CpMo(CO)_3^+$ 221,222.

Below -20° , BF₃-promoted carbonylation of CpFe(CO)DMe [D = PPh₂NMe-(S)-CHMePh] proceeds stereospecifically, with methyl migration to the CO group²²³. Stereochemistry of CO insertion in optically active CpFe(CO)(PR₃)Et derivatives has been found to depend on solvent: in nitromethane only formal alkyl migration was observed, but in HMP formal CO migration predominated²²⁴. Reaction of Me₃P with CpFe(NO)Me₂ resulted in methyl migration to the coordinated nitrosyl group, giving CpFe(PMe₃)(ONMe)Me²²⁵.

ture²²⁶. Photochemical introduction of a phosphite ligand into $FpCH_2C(OMe)=CH_2$ enhances its reactivity in cycloadditions with electron-deficient alkenes, as expected from the accepted zwitterion mechanism²²⁷. FpCp enters readily into (metal-assisted?) Diels-Alder reactions, forming <u>syn</u>-7-Fp-bicyclo[2.2.1]heptene products (X-ray); Ce(IV) oxidation in methanol introduces an ester group in place of the Fp group, making FpCp a useful synthetic surrogate for 5-carbomethoxy-1,3-cyclopentadiene²²⁸. Reaction of FpCp with phosphines and phosphites results in ready CO substitution involving a radical chain mechanism:²²⁹

 $F_pCp + Q \rightarrow QCp + F_p ; F_p + D \rightarrow CpFeDCO + CO ;$

 $C_{p}FeDCO + F_{p}C_{p} \longrightarrow (31)$

With PMe₃, the product was the ionic CpFe(CO)(PMe₃) $_2^+$ Cp⁻. CpFe(CO)(PPh₃)COCH₂COR undergoes a similar heterolysis to the cation FpPPh₃⁺ and the carbanion RCOCH₂^{- 230}.

Carbamoyl complexes CpFe(CO)(PMe_Ph)CONHMe result from reaction of methylamine with FpPMe_Ph⁺²³¹. Isoelectronic carbanions result from low-temperature deprotonation of the acyls CpFe(CO)(PR₃)COCH₂R²³²⁻²³⁴. Examples of C-alkylation, acylation, and aldol reactions of these carbanions have been reported. High diastereoselectivity was reported in alkylation reaction 32^{234} .

The cyclopentadienyl rings of FpR (R = Ph, CH₂Ph, Fp) underwent metallation with BuLi in THF at -78°, allowing preparation of alkylated and silylated derivatives²³⁵. Fp⁻ displaced a fluoride ion from octafluorocyclooctatetraene, giving $FpC_{B}F_{7}^{236}$. X-ray structures of $FpCH_{2}C(=Y)Fc$ [Y = O^{237} and $C(CN)_{2}^{238}$] have been reported.

Matrix photolysis of FpCOMe gave CpFe(CO)COMe, which still showed a η^{1} -acetyl group, despite its coordinative unsaturation²³⁹. Reduction of FpCO⁺ with NaBH₃CN gave FpCH₂OH, which decomposed to Fp_2 and formaldehyde when treated with phosphines²⁴⁰. Likewise, NaBH₄ reduction of $Fp'CO^+$ in methylene chloride gave $Fp'CH_2OH^{174}$. $FpCH_2Cl$ gave phosphonium salts $FpCH_2PR_3^+$ on reaction with phosphines²⁴¹. The stereochemical outcome of alkylation of chiral CpFe(D)(CO)CH₂Cl with prochiral nucleophiles has been examined²⁴².

 $Fp'CO^+$ reacted with two moles of $Me_3P=CH_2$ to form the ylide $Fp'C(0)CH=PMe_3$, which could be alkylated at the ylide carbon²⁴³. Deprotonation of the phosphonium salt $FpCH(SiMe_3)PMe_3^+$, however, produced a ketenyl complex by rearrangement (eq. 33)²⁴⁴.

The acetylide complexes such as $CpFe(DPPE)C \equiv CMe$ are readily methylated to form vinylidene complexes $CpFe(DPPE)C=CMe_2^{+245}$. Methylation of the vinyl complexes $CpFe(CO)(PR_3)C(OMe)=CH_2$ gave a mixture of carbene complexes $CpFe(CO)(PR_3)=C(OMe)R^+$ having R = Me, CH_2Me , and $CHMe_2$, as a consequence of acid-base equilibria between vinyl and carbene complexes during reaction²⁴⁶. The vinyl complexes resulted from methylation and then deprotonation of acyls; $Fp'C(OMe)=CH_2$ were also obtained in this manner²⁴⁷.

Carbene complexes (derivatives of $FpCH_2^+$) have continued to draw intense interest. $FpCH_2^+$ itself has been shown to react with CO at -80° to give the ketene complex $Fp(\eta^2-CH_2CO)^+ 248$. New routes to alkylidene complexes or their precursors have been reported, including reaction of RLi with $FpCHOMe^+ 249$, and borohydride reduction of O-methylated acyl-iron compounds²⁵⁰. The resulting α -methoxyalkyls are converted to reactive alkylidene complexes upon reaction with Me₃SiOTf at -78° . These rearrange on warming to the more stable alkene- Fp^+ ions; the ethylidene complex, however, gives $FpCH_2CH^+CHMeFp$). Generation of the alkylidene complexes in the presence of alkenes gives cyclopropanes^{250,251}. Use of chiral CpFe(CO)(PPh_2R)CHMe⁺ complexes gave high optical yields of chiral cyclopropanes²⁵².

Reactions of the thiocarbene complex FpCHSMe⁺, 34, with nucleophiles, especially phosphines²⁵³ and amines²⁵⁴, have been studied. Reaction of 34 with water gives FpCO⁺ and FpCH₂SMe, via an intermediate formyl, FpCHO. 34 reacts with diazomethane to form FpS(Me)CH=CH₂⁺ ²⁵³. FpC(=S)SFp and other FpC(=S)SML_n react with M'(CO)₅(THF) (M' = Group VI metal) to form trimetallic species such as FpC[SM'(CO)₅]SFp; an X-ray structure for the example with M' = W was reported²⁵⁵. More conventional diheterocarbene complexes were obtained by reaction of FpCO⁺ or FpCS⁺ with aziri-

dine²⁵⁶:

$$F_{p}CO^{+} + H\ddot{N} \longrightarrow F_{p}=C \xrightarrow{N} H$$
(34)

Reaction of FpI with 1,4-dilithio-1,4-diphenylbuta-1,3-diene gave the cyclic carbene complex 35; reaction with trimethyloxonium fluoborate gave 1,3-diphenyl-2-methoxyferrocene²⁵⁷. Protonation of cyclooctatetraenyl-Fp at -40° gave the partially homoaromatic carbene complex 36, which rearranged to Fp(COT)⁺ at 0° ²⁵⁸.

8d. Cyclopentadienyliron derivatives of η^2 to η^5 ligands

The tetrahydroindenyldicarbonyliron group has been transferred from its isobutylene complex to double bonds in dienes for use as a protecting group²⁵⁹. Decomplexation of styrene-Fp⁺ occurs upon treatment with tetrabutylammonium fluoride or hydroxide; styrene and Fp₂ result¹⁹⁶.

Dicationic bis(alkene) complexes result when the bridged dianion $Me_2Si[C_5H_4Fe(CO)_2]_2$ is treated consecutively with allylic chlorides then acid. Alkene exchange from the bis(isobutylene) complex to other alkenes proved unsuccessful²⁶⁰. Complexes $[FpCH_2CH=CH(CH_2)_nCH=CH_2]Fp^+$ (n = 4,3), which can be formed by deprotonation of the doubly complexed dienes or protonation of the bis-allyls, cyclize by attack of the nucleophilic Fp-allyl group on the electrophilic coordinated alkene (reaction 35); the stereochemical effects have been extensively investigated²⁶¹.

The stereochemistry of attack by prochiral nucleophiles on chiral CpFe(CO) (PPh₃) (CH₂=CH₂)⁺ has also been studied²⁴².

Although attack of nucleophiles on (alkyne)Fp⁺ and related complexes generally gives the product with the nucleophile and the Fp group trans, an apparent exception has been reported:

Labelling studies revealed that the initial hydride attack was on the <u>exo</u> face of the cyclopentadienyl ring, after which the <u>endo</u> hydrogen was transferred to the coordinated alkyne²⁶². Attack by organocuprates follows the more conventional pattern of <u>trans</u>attack; in the case of coordinated 1-phenylpropyne, the nucleophile attacks the 1-carbon²⁶³

Reaction of FpC(O)CH₃ with MeLi then lithium tetramethylpiperidide results in inter-ligand bond formation, which gives the η^3 -allyl dianion, CpFe(CO)[CH₂C(O⁻)CMeO⁻], which can be acylated or silylated to form neutral η^3 -allyls²⁶⁴. An X-ray structure of η^3 -CH₂C(Fc)C(CN)₂]Fe(CO)Cp has appeared²³⁸.

The pentakis(carbomethoxy)cyclopentadienyl anion coordinates Fe(II) with the carbonyl oxygens, not the cyclopentadienyl rings ²⁶⁵. Reaction of CpFe[η^{5} -B₉H₉CHCCHO] with vinylic Grignard reagents then acid gave allylic cations stabilized by the (cyclopentadienyl)(η^{5} -(3)-1,2-dicarbollyl)iron group²⁶⁶. A triple-decker sandwich compound, 37, was formed in minor amounts from reaction of CpCo[η^{5} -cycloC₂Et₂(BMe)₂CH]⁻ with FpI²⁶⁷. The isoelectronic 38 resulted from reaction of 1-phenyl-4,5-dihydroborepin with Fp2²⁶⁸. Photoelectron spectra of several CpFe(cyclohexadienyl) complexes have been reported and interpreted²⁶⁹.

9. COMPOUNDS WITH η^6 -TRIENE AND ARENE LIGANDS

A unique $Fe(CO)_2$ complex of a conjugated triene has been obtained, along with more conventional $Fe(CO)_3$ complexes, 20 and 21, by reaction of dehydro- β -ionone with iron carbonyls (eq. 24), and also by reaction of 21 with HO_2^- in methanol. An X-ray crystallographic study verified the structure, and supported its formulation as a bis-(allyl)-Fe(CO) $_2^{129}$. Photolysis of Cp'Fe(CO) $_3^+$ in the presence of cyclooctatetraene gave Cp'Fe(η^6 -COT)⁺ 204. An η^6 -cyclooctatriene complex, 39, (C $_8H_{10}$)Fe(Et $_2C_2B_4H_4$) has been obtained from treatment of FeCl₂ with C $_8H_8^{-2}$ and Et $_2C_2B_4H_5^-$ in THF²⁷⁰.

Theoretical studies of CpFeAn⁺¹ and their reduced, neutral forms have been reported^{271,272}. The latter are well regarded as 19-electron species, since the added electron occupies an orbital 83% metallic in character²⁷². Haptotropic rearrangements of the CpFe group in polycyclic arene complexes have received elegant theoretical treatment²⁷³.

The arene group was readily displaced from CpFeAn⁺ by three trimethylphosphite ligands, with reductive electron transfer cata-

lysis²⁷⁴. Added salts hinder the reaction of $CpFeC_6Me_6$ with oxygen to give $CpFe(n^5-C_6Me_5CH_2)^{275}$. Photolysis of CpFe(p-xylene)⁺ in acetonitrile produces $CpFe(NCMe)_3^+$, which decomposes to ferrocene and Fe^{+2} at room temperature, and from which the acetonitrile ligands can be readily displaced by phosphines at -40^o ²⁷⁶. Quantum yields for xylene displacement are highly solvent and counterion dependent²⁷⁷. $CpFeAn^+$ groups have been attached to polymers for possible use as redox catalysts²⁷⁸.

Reaction of Fp'Br and AlCl₃ with anthracene gave principally the Cp'Fe⁺ complex of 1,2,3,4-tetrahydroanthracene, whereas FpCl gave the 9,10-dihydroanthracene complex²⁷⁹. The latter could be oxidized to CpFe(anthraquinone)⁺ using KMnO₄, as could other methylene groups alpha to arene rings in CpFeAn⁺ ²⁸⁰. Nucleophilic ring opening (eq. 37) occurred readily with phenolate, but not thiophenolate or anilide, leaving groups²⁸¹. The CpFe⁺-complexed

heterocycles were obtained by ligand exchange between ferrocene and the heterocycles; with excess ferrocene some dicoordinated products were also obtained²⁸².

A CpFe complex of 1-phenyl-2-methylborabenzene was formed along with 38^{268} . An Fe(CO)₃ complex results from reaction of 1,4-diferrocenyl-1,4-diboracyclohexa-2,5-diene with iron carbonyl; an upfield shift of the boron resonance relative to the free ligand implied η^6 -coordination as a diborabenzene ligand²⁸³. MO calculations on the conformation and reactivity of bis(borabenzene)iron have been carried out²⁸⁴.

The cyclooctatriene complex 39 reacted with arenes over AlCl₃ to give $(\eta^6-\text{arene})\text{Fe}(\text{Et}_2\text{C}_2\text{B}_4\text{H}_4)^{285}$, an example of which could also be obtained by reaction of iron atoms with toluene and 2,3-Et₂C₂B₄H₆²⁸⁶. Reaction of phosphorus nucleophiles with arene ligands in An₂Fe⁺² has been studied²⁸⁷. Bis(paracyclophane)Fe²⁺ complexes have been prepared²⁸⁸.

10. BIMETALLIC COMPOUNDS

a. Derivatives of nonacarbonyldiiron

Formation of $(bpy)Fe_2(CO)_7$ from bpy and $Fe_2(CO)_9$ does not occur by direct substitution, but rather through the intermediate $(bpy)Fe(CO)_3$, analogous to 8^{289} . The compound $Ge[Fe(CO)_4]_4$ (2Fe-Fe) results on reaction of iron carbonyls with vinylgermanes²⁹⁰ or with $Ge[=Mn(CO)_2(C_5H_4Me)]_2^{291}$. Both papers have reported X-ray structures. The most numerous group of organodiiron compounds related to nonacarbonyldiiron is those in which the three bridging carbonyl groups are replaced by bridging ligands (most commonly two) which contribute a total of six electrons to the $Fe_2(CO)_6$ cluster. If the two bridging atoms Y and Z are mutually bonded, a tetrahedral YZFe₂ cluster results; if not, a "butterfly" structure is formed.

A well-known simple example is the cluster compound $S_2Fe_2(CO)_6$, 40, which has been the subject of Hartree-Fock-Slater calculations²⁹². Multiphoton dissociation/ionization of 40 gave rise to species such as Fe⁺, FeS⁺, and $Fe_2S_{0-2}^{+293}$. Insertion of styrene into the S-S bond of 40 to give 41 (R = Ph) has been reported²⁹⁴. Reaction of trimethylvinylsilane with S₈ and Fe₃(CO)₁₂ gave 40, 41 (R = Me₃Si) (X-ray structure reported) and a number of cyclic sulfur compounds²⁹⁵. 40 reacted with alkynyl-lithium reagents with opening of the S-S bond; the resulting anionic species could be trapped with various electrophiles (RX, MeCOC1, MeHgC1) to yield 42 (Y = PhC = CS; Z = MeS, MeC(O)S,

MeHgS)²⁹⁶. X-ray structures of 42 (Y = Z = MeHgS) and the closely related $(\mu - MeHgS)_2Fe_2(NO)_4$ have been determined ²⁹⁷. Reaction of trithia[3]ferrocenophane with Fe₃(CO)₁₂ gave 42 (YZ = SC₅H₄FeC₅H₄S)²⁹⁸. Ph₂PCl reacted with Fe₃(CO)₉(μ_3 -SR)⁻ to give 42 (Y = RS, Z = Ph₂P) along with trinuclear products²⁹⁹. An analogous heterobridged product resulted from reaction of <u>ortho-C</u>₆H₄(SH)(PHPh) with Fe₂(CO)₉; two-electron reduction opened the Fe-S bond rather than the Fe-Fe bond. Similar results were obtained for the dithia and diphospha analogs³⁰⁰.

Reaction of PhPCl₂ with Fe₂(CO)₉ gave, in addition to the Fe(CO)₄ complex, two diiron hexacarbonyls 42 (Y = PhPCl; Z = Cl, PhPCl) whose crystal structures were determined⁶¹. Similarly, CpMn(CO)₂PBr₃ gave 42 [Y = Z = P=Mn(CO)₂Cp]³⁰¹. Symmetrical complexes 42 having phosphido and arsenido bridges have been obtained by reaction of iron carbonyls with appropriate diphosphines and diarsines. Thus, 3,3',4,4'-tetramethyl-1,l'-biphospholyl gave 43, in addition to derivatives in which one or both rings were coordinated as dienes to Fe(CO)₃ groups³⁰². And tetraphenyldiarsetene formed 44 upon reaction with Fe₃(CO)₁₂³⁰³. ϕ

43

The symmetric (C_{2v}) isomer of 42 (Y = Z = MePH) has been isolated, and its nmr spectra extensively analyzed³⁰⁴. Reduction of the analog having diphenylphosphido groups, 42 (Y = Z = Ph₂P), with Et₃BH⁻ gave a species with one Fe-P bond ruptured, but further reduction gave the known $(\mu - Ph_2P)_2Fe_2(CO)_6^{-2}$ with no formal Fe-Fe bond. Alkylation of the first species gave a product with a μ -acylbridge³⁰⁵. A P-P bond was introduced into 42 (Y = Z = Me₃CPH) by proton removal using MeLi, then oxidation with 1,2dibromoethane. A crystal structure of the resulting diferradiphosphatetrahedrane was reported³⁰⁶.

 $Fe_2(CO)_6$ complexes with carbon in the bridge are of especial interest. Thicketene complex 45 (X-ray structure reported) added

triphenylphosphine to an iron atom, with rupture of the Fe-C bond; photolysis restored the bond with loss of CO^{307} . The reactions of the μ - η^2 -acetylides 42 (Y = C \equiv CR, Z = PPh₂) with amines result in three types of products (eq. 38), depending on R and the

amine³⁰⁸. The product **46** added a silver ion across the Fe-Fe bond $(X-ray structure)^{309}$.

Displacement of CO from the μ -thioacyl complexes 47 by trimethylphosphite has been studied. Under thermal or electrochemical activation, displacement occurs most readily at the carbon-bearing iron atom^{310,311}, as supported by a crystal structure³¹².

Two related instances of carbon-iron bond formation resulting from ylide generation in a bridge have been reported. Deprotonation of 42 (Y, Z = SCH₂S) with LiNR₂ followed by alkylation with bromoacetone led to the product 48 (R = CH₂COCH₃, in which an alkyl dithioformate functions as a 6-electron ligand. An isomer 49 was obtained by reaction of MeCOC \equiv CH with 42 (Y = Z = SH), and X-ray structures were reported for both 48 and 49³¹³. Similar

chemistry resulted from deprotonation of $a\mu$ -DPPM complex (eq. 39)³¹⁴. Deprotonation of **48** (R = Me) followed by methylation produces a product analogous to **45**, but with a dimethylsulfonium cation rather than a carbenium ion adjacent to the tetrahedral CSFe₂ cluster³¹⁵ (X-ray structure).

A curious structure was obtained by reaction of $(OC)_5 Cr=C(COPh)NHR$ with Fe₂(CO)₉³¹⁶. An X-ray structure was reported, and the result was represented as 50a. Two of the Fe-C bonds shown in 50a were, however, extraordinarily long (2.46 and 2.48 A); accordingly 50b (which lacks these bonds and the conse-

quent pentavalent carbon) may be a more satisfactory interpretation of the structure. In **50b** the ligand is shown as a ketocarbene. Reaction of 1,2,3-thiadiazoles with Fe₂(CO)₉ gave, along with similar thicketocarbene-Fe₂(CO)₆ complexes, a new type of thicketoimine complex, **51**, for which an X-ray structure was reported³¹⁷.

The mass spectra of several types of product from reactions of iron carbonyls with imines and azines have been reported³¹⁸. The products included 42 (Y = Z = N=C(R)Ar) and 52 (R = Ph), from reaction of PhCH=NPh with Fe₃(CO)₁₂³¹⁹. 52 (R = Me₂CH) was also obtained by reaction of Fe₂(CO)₉ with (OC)₅W=C(Ph)NHCHMe₂³¹⁶.

Mass spectroscopic investigations of the well-known ferrole complexes, in which a 1,3-butadiene-1,4-diyl ligand bridges the

 $Fe_2(CO)_6$ unit, have been reported 123,320. A ferrole complex 53

and a related product 54 were obtained upon reaction of $PhP(Q-C_6H_4C \cong CPh)_2$ with iron carbonyls¹²². Butatriene complexes, $(R_2C=C=CR_2)Fe_2(CO)_6$, were obtained as byproducts from reaction of $(RC \equiv CR)Co_2(CO)_6$ with $Fe(CO)_5^{321}$. Reaction of 2-alkoxyfurans with $Fe_2(CO)_9$ gave ferracyclic products 55^{128} .

Proton removal from (cycloheptatriene) $Fe_2(CO)_6$ gives a reactive anion, $C_7H_7Fe_2(CO)_6$, which forms fluxional 56 (X-ray structure) by facile decarbonylation (eq. 40)³²². A Fe₂(CO)₃ complex

bearing three μ -PF₂N(Me)PF₂ ligands has been prepared by reaction of the aminobisphosphine ligand with Fe₃(CO)₁₂ under photolytic conditions^{62a}.

10b. Derivatives of Dicyclopentadienyldiirontetracarbonyl

Reaction of Fp_2 with a tetrachlorotetrathiolene (eq. 41) resulted in desulfurization and formation of an Fe-aryl bond³²³.

Compound 57 ($R_1 = R_2 = H$) from Fp⁻ and FpCH₂Cl) yielded a small amount of propene on reaction with ethene at 350 psi and 150^o. Fp(CH₂)₃Fp gave an 80% yield of cyclopropane upon decomposition at 120^o. A diferracyclopentane intermediate has been inferred in these reactions³²⁴.

Reaction of Fp₂ with MeLi then trifluoroacetic acid at low temperature afforded the μ -vinylidene products (57, R₁,R₂ = =CH₂, which were reversibly protonated with HBF₄ to form the μ -ethylidyne cation³¹⁴. Crystal structures of the μ -vinyl and -ethylidene (57, R₁ = H, R₂ = Me) have been reported³²⁵. The rates of rearrangement of the (μ -alkylidyne)Fe₂(CO)₃Cp₂ cations to μ alkenyl cations were highly dependent on the alkyl substituents³²⁶. The μ -methylidyne cation further revealed carbenium ion character in electrophilic attacks on alkenes (eq. 42)³²⁷. _MAlkenyl cations predominantly added H⁻ to the β -carbon on reduction by NaBH₄, giving μ -alkylidene complexes³²⁸.

Reaction of CpFe(1,5-cyclooctadiene) with 2-butyne gave the electron-deficient, fluxional $Cp_2Fe_2(C_6Me_6)$, whose X-ray structure has been published³²⁹.

10c. Heterobimetallic compounds

Reaction of toluene-solvated iron atoms with $Mn(CO)_5$ gave FeMn(CO) $_9$ ⁻⁷. Me₂NP(H)Fe(CO)₄ was attacked by Mn(CO) $_5$ ⁻ to produce 58; similar reactions with other transition metals were also reported³³⁰.

Reaction of 25 with $\operatorname{Ru}_3(\operatorname{CO})_{12}$ (or of the analogous ruthenium complex with $\operatorname{Fe}_3(\operatorname{CO})_{12}$) gave a ruthenole-Fe(CO)₃ complex (X-ray). Hydrogen was transferred to other unsaturated molecules¹⁵⁴:

Similarly, reaction of the cobaltoles $R_4C_4Co(PPh_3)Cp$ with $Fe_2(CO)_9$ gave the CpCo-coordinated ferrole products³³¹.

An X-ray structure of $\operatorname{FeIr}(\mu - \operatorname{PPh}_2)(\operatorname{CO})_5(\operatorname{PPh}_3)_2$, from reaction of $\operatorname{Ph}_2\operatorname{PFe}(\operatorname{CO})_4^-$ and trans-IrCl(CO)(PPh_3)_2, showed a long (2.96 A) Fe-Ir bond³³². Reaction of (MeC \equiv CCH₂OH)Co₂(CO)₆ with Fe(CO)₅ gave 59³²¹. The neutral heterometallic compound Fe(CO)₄(μ -vinyl)Co(CO)₃ was obtained from reaction of Fe₂(CO)₇(μ -vinyl)⁻ with dicobaltoctacarbonyl. Heating gave several trinuclear clusters³³³.

11. TRINUCLEAR CLUSTER COMPOUNDS

a. Triiron clusters

The dihydrides Cp_2MH_2 (M = Mo or W) reduced $Fe_2(CO)_9$ to form Cp_2MH^+ HFe₃(CO)₁₁ - ³³⁴. The interactions of the anion, <u>triangulo-</u>(μ -carbonyl)decacarbonyl(μ -hydrido)ferrate(1-), with cations and solvents have been studied by IR and by crystallographic study of the diisopropylammonium salt³³⁵.

Acylation of a bridging carbonyl of $\text{Fe}_3(\text{CO})_{11}^-$, followed by reductive cleavage of the acylate anion left $[\text{Fe}_3(\text{CO})_9\text{CCO}]^{-2}$, whose X-ray structure showed the ketenylidene unsymmetrically bound to the Fe₃ cluster. The structure may be described as a carbide-carbonyl having a semibridging carbonyl joining the carbide carbon to one Fe. Reaction with electrophiles displaced the carbonyl to a Fe-Fe bridging position, forming $[Fe_3(CO)_{10}(\mu_3-CE)]$ (E = H, Me⁾³³⁶. The facile migration of the CO to and from the carbide provides an exceptionally apt model for Fischer-Tropsch chemistry.

Likewise, the $[Fe_3(CO)_9(\mu_3-0)]^{-2}$ dianion, which has been prepared and characterized³³⁷, provides a model for a metal surface-adsorbed oxygen. The isoelectronic μ_3 -NPh species has been implicated as an intermediate in reduction of nitrobenzene to aniline by polymer-bound HFe₃(CO)₁₁⁻³³⁸. Reaction of Fe₃(CO)₁₂ with NaSR resulted in formation of the trinuclear Fe₃(CO)₉(SR)⁻, in which the sulfur functions as a five-electron ligand. The alkyl group R was readily displaced on heating in polar solvents, forming Fe₃(CO)₉S^{-2 339}.

Reaction of diphosphines R_2PCH_2PHR with $Fe_2(CO)_9$ under vigorous conditions gave Fe_3 clusters in which the diphosphine ligand had undergone cleavage (eq. 44)³⁴⁰. HFe₃(CO)₁₁ reacts with eth-

ene at room temperature to form a μ -acyl species 60 (R = Et), which gives ethane and propanal under 15 atm. hydrogen³⁴¹. Protonation of 60 (R = Me) gives a neutral product with a μ -hydrido ligand bridging Fe(1) and Fe(2). Methylation forms 61 or 62 under slightly different conditions³⁴². Two-electron reduction of 62 occurred with loss of methanol to give the acetylide complex 63³⁴³. The related species ($\mu_3 - \eta^2$ -RCCR)Fe₃(CO)₉ have been examined by CNDO calculations in connection with photoelectron spectra³⁴⁴.

 $Fe_3(CO)_{11}(ax-NCR)$ lost CO on heating at 100^o, with the isonitrile ligand assuming the role of a six-electron ligand (eq. 45); reduction with R_3BH^- occurred at the carbon³⁴⁵. The methoxymeth-

References p. 242

ylidyne cluster HFe₃(μ -COMe)(CO)₁₀ (from methylation of HFe₃(CO)₁₁⁻) underwent reversible hydrogen addition to form the symmetrical product H₃Fe₃(μ ₃-COMe)(CO)₉³⁴⁶.

The vinylidene complex 57 (R_1 , $R_2 = =CH_2$) formed the cluster (CpFe)₃(μ -CO)₃(μ ₃-CMe) on refluxing in dibutyl ether, or upon reaction with Fe₂(CO)₉, then with cyclopentadiene in refluxing toluene ³⁴⁷.

Syntheses and properties of the <u>nido</u> clusters 64 has received considerable attention during 1983. 64 (Y = 2 = S) and their dihydro derivatives have been studied by photoelectron spectroscopy, as illuminated by theory 348. Reduction of an analog of **64** having a dithiocarbene ligand in place of a terminal carbonyl has been studied³⁴⁹. The ditellurium cluster 64 (Y = Z = Te) has been prepared and used as a precursor to an extensive group of irontellurium clusters³⁵⁰. Reaction with CpRh(CO)₂ gave 42 [Y,Z = TeRh(Cp)(CO)Tel , which gave two isomeric hexacarbonyls on decarbonylation with Me₃NO³⁵¹. The mixed clusters 64 (Y = S, Z = PR) were prepared by reaction of RP(=S)Cl₂ with Na₂Fe(CO)₄, and X-ray strctures for aryl derivatives were reported^{352,353}. The sulfur atom in these complexes maintained sufficient Lewis basicity to form adducts with $M(CO)_5$ groups, where $M = Cr, W^{354}$. Photolysis of **64** (Y = Z = PhP) in acetonitrile gave products with one or two acetonitrile ligands replacing CO's. An X-ray structure showed two basal CO's from the same iron atom to have been replaced³⁵⁵.

Reaction of the <u>closo</u> anion $Fe_3(CO)_9(\mu_3-SR)^-$ with ZCl (Z = R_2Pn , RS, RSe) gave the reduced clusters **65** (Z as above, Y = SR)²⁹⁹. Reaction of **52** (R = PhCH=N-) with $Fe_3(CO)_{12}$ gave the open cluster **66**³⁵⁶. The novel linear triiron "cluster" **67** (X-ray structure) resulted from reaction of benzothiadiazole with $Fe_2(CO)_9^{357}$.

11b. Fe2M Clusters

A linear trimetallic cluster, **68**, similar to **67** resulted from reaction of Mo(SCMe₃)₄ with Fe₂(CO)₉³⁵⁸.

Reaction of PhC \equiv CM(CO)₂Cp (M Cr, Mo, W) with Fe₂(CO)₉ gave MFe₂ clusters with a 5-electron bridging alkynyl ligand, 69³⁵⁹.

The same type of product resulted from the less obvious reaction of $RC \equiv W(CO)_2Cp$ with $HFe_3(CO)_{11}^{-360}$. X-ray structures were reported in both cases. Reaction of the alkylidyne-tungsten compound with $Fe_2(CO)_9$ proceeded as in eq. 46^{361} .

Reactions of the cluster **70** with various 2-electron ligands occurred with reversible opening of a Fe-Mn bond³⁶². Reaction of the vinylidene complex **57** (R₁, R₂ = C=CH₂) with Mn₃(μ -H)₃(CO)₁₂ gave (CpFe)₂Mn(CO)₃(μ ₃-CMe)(μ -CO)₃³⁴⁷. A Fe₂Co cluster, **71**,

resulted from reaction of $Fe_2(CO)_6(PHR)_2$ with $Co_2(CO)_8^{363}$. The mixed cluster $Fe_2Rh(CO)_{11}$ was the initial product from reaction of $Rh_2(CO)_4Cl_2$ with $HFe(CO)_4$, but reacted further to form higher clusters³⁶⁴. The Pt-bound CO in $Fe_2(CO)_8[\mu - Pt(PPh_3)CO]$ was readily replaced by phosphites and other 2-electron ligands³⁶⁵.

llc. FeM2 clusters

Mueller and Vahrenkamp have published four papers during 1983 dealing with synthesis of trimetallic clusters bearing μ_3 -PR phosphinidene caps^{330,366-368}. The tetrahedral clusters reported included examples with Co(CO)₃, Ru(CO)₃, Mn(CO)₄, Cr(CO)₂Cp, and other apical metal groups, in addition to the Fe(CO)₃ and PR groups. Metals could be exchanged into existing clusters; for example, a Co(CO)₃ group in FeCo₂(CO)₉(μ_3 -PR) could be replaced by a CpNi group upon reaction with (CpNiCO)₂³⁶⁸.

Photoreaction of multiply-bonded $[CpCr(OR)_2]_2$ with Fe(CO)₅ gave the Cr₂Fe cluster 72³⁶⁹. An X-ray structure of FeRu₂(μ -OH)-2(CO)₈(PPh₃)₂ has been published³⁷⁰.

Exchange of a CpFeCO group for a Co(CO)₃ group in (alkyli-

dene)Co₃(CO)₉ clusters has been achieved using HgFp₂, with electron-transfer catalysis³⁷¹. The analogous imido cluster, FeCo₂(μ_3 -NH)(CO)₉, (X-ray) resulted from reaction of FeCo₃(CO)₁₂⁻

with NO^{+ 372}. A (OC)₃Fe(CoCp)₂ cluster capped with two PhC ligands has been characterized by X-ray crystallography³⁷³. A Pt₂Fe cluster compound resulted from reaction of [(DPPM)PtCl]₂ with Na₂Fe(CO)₄, as did an analogous PdPtFe compound³⁷⁴.

12. TETRA- AND POLYNUCLEAR CLUSTER COMPOUNDS

The reactions of hydrogen with a variety of previously characterized cluster compounds containing alkyne and vinylidene ligands, and including Ru, Os and Ni in the cluster in addition to Fe, have been studied. Results included hydrogenation of the ligand and disruption of the cluster³⁷⁵.

Many new tetranuclear tetrahedral clusters have been prepared by a general process summarized in eq. 47. The parent trinuclear clusters included examples with $FeCo_2S$, $FeCo_2PR$, FeCoMoS, and FeCoWS cores. M' was either CpMo(CO) or CpW(CO) . X-ray crystallography was used to characterize the CoFeMoWS and Co_2FeMoS cluster products, and ligand fluxionality was examined³⁷⁶.

Two isomeric $Fe_2(CpMo)_2S_2(CO)_8$ clusters resulted from reaction of 40 with $Cp_2Mo_2(CO)_4$ (Mo \cong Mo). Each is composed of two FeMo₂S tetrahedra sharing the Mo-Mo edge; they differ in the stereochemical orientation of the two tetrahedra³⁷⁷. A discussion in the context of electron-counting emphasized that the bitetrahedral structures are electron-precise, in contrast to a hypothetical octahedral isomer, which would be electron-deficient³⁷⁸. An analogous compound [(MeC₅H₄)MoS₂Fe(CO)₃]₂, having two additional μ_3 -S ligands in place of two μ -CO ligands, was obtained by reaction of [(MeC₅H₄)Mo(μ -S)(μ -SH)]₂ with Fe(CO)₅ and Me₃NO³⁷⁹.

A Fenske-Hall calculation of $HFe_4(CO)_{12}(\eta^2-CH)$ has provided a rationale for the tilted orientation of the CH moiety³⁸⁰. The isoelectronic HFe₄(CO)₁₂BH₂ has been prepared and characterized crystallographically. Two strong Fe-H-B three-center interactions involving the "wingtip" irons of the Fe₄ butterfly were indicated³⁸¹. Octahedral clusters having two ArP groups capping square planar Fe₄(CO)₁₂ or Fe₂CO₂(CO)₁₁ arrays were obtained by treating Fe₂(CO)₆(PHR)₂ with Fe₃(CO)₁₂³⁶³. (CpFeCO)₄ formed a stable adduct with an alumina surface³⁸². Mossbauer spectra of many polynuclear iron clusters, including FeRu₃, Fe₄³⁸², Fe₅C, Fe₅N, and Fe₆C clusters, have been reported ^{383,384}. Rates and equilibria in deprotonation of H₄FeRu₃(CO)₁₂ and H₂FeRu₃(CO)₁₃, including F^{*}a's, have been reported³⁸⁵. Reaction of RuCo₂(CO)₁₁ with the capping reagent FpC=CPh gave the product 73³⁸⁶. Fluxionality of

the carbonyl ligands in HFeCo₃(CO)₁₂, 74, and its conjugate base has been examined with use of ¹³CO-enriched material³⁸⁷. 74 reacts with alkynes in hexane to give FeCo₃(CO)₉(RCCR)(RCCHR), whose structure has been determined. In acetone or other polar solvents, FeCo₂(CO)₉(RCCR) was the predominant product³⁸⁸. The μ -vinyl complex 57 (R₁,R₂ = =CH₂) affords compound 75 on reaction with Co₂(CO)₈³⁴⁷. Several new Fe-Rh anionic carbonyl clusters

have been prepared, and their fluxional properties examined³⁶⁴. The product $Fe_2Rh_2(\mu - PPh_2)(CO)_8$ (from reaction of $Fe(CO)_4PPh_2H$ with $Rh_2(C_3H_5)_4Cl_2$) showed an unusual linear Fe-Rh-Rh-Fe structure³⁸⁹.

Cluster expansion and contraction reactions of $(CpNi)_2Fe_2(CO)_6(C_2Ph_2)$ have been studied³⁹⁰. The Fe₃ cluster anion shown in eq. 45 underwent auration with Ph₃PAuCl to give 76, in contrast to the protonation result³⁹¹. The structures of $[fe(CO)_4Au_2(DPPM)]_2$ and $[fe(CO)_4Au_2(DPPE)]_2$ differed significantly, the former showing a Au₄ rhomboid with two μ -Fe(CO)₄ bridges, and the latter isolated Au₂Fe triangles³⁹². SFe₃(CO)₉⁻² underwent auration to give 77³⁹².

POST-SCRIPT Insofar as the list of references to this 1983 survey represents publication habits in the field of organoiron chemistry as it is currently practiced, it may be of interest to note that, of about 400 references, J. Organometal. Chem. (95 citations), Organometallics (70), and Inorg. Chem. (50) together account for more than half of the published work. Next in order come J. Am. Chem. Soc. (44), J. Chem. Soc., Dalton Trans. (28), J. Chem. Soc., Chem. Comm. (17), and Angew. Chem. (14), followed by many others.

References p. 242

13. REFERENCES

- D. Astruc, Tetrahedron 39 (1983) 4027-95. 1.
- 2. Gmelin Handbook of Inorganic Chemistry. 8th Edition. Fe. Organoiron Compounds, Part Bll. U. Kruerke, editor. Gmelin In stitut fur Anorganische Chemie der Max-Planck-Gesellschaft zur Forderung der Wissenchaften and Springer-Verlag, Berlin, 1983.
- G. A. Ozin and J. G. McCaffrey, Inorg. Chem. 22 (1983) 1397-3. 99.
- 4. Z. H. Kafafi, R. H. Hauge, L. Fredin, W. E. Billups, and J. L. Margrave, J. Chem. Soc., Chem. Commun. (1983) 1230-31.
- 5. S. F. Parker, C. H. F. Peden, P. H. Barrett, and R. G. Pearson, Inorg. Chem. 22 (1983) 2813-18.
- L.H. Simons and J. J. Lagowski, J. Organometal. Chem. 249 6. (1983) 195-203.
- 7. G. A. Ozin, K. M. Coleson, and H. X. Huber, Organometallics 2 (1983) 415-20.
- A. V. Kavaliunas, A. Taylor, and R. D. Rieke, Organometal-8. lics 2 (1983) 377-83.
- 9. R. Houriet, L. F. Halle, and J. L. Beauchamp, Organometallics 2 (1983) 1818-29.
- 10. D. B. Jacobson and B. S. Freiser, J. Am. Chem. Soc. 105 (1983) 5197-206.
- 11. D. B. Jacobson and B. S. Freiser, J. Am. Chem. Soc. 105 (1983) 7492-500.
- 12. D. B. Jacobson and B. S. Freiser, J. Am. Chem. Soc. 105 (1983) 7484-91.
- 13. S. K. Huang and J. Allison, Organometallics 2 (1983) 883-90.
- 14. T. J. Carlin, L. Sallans, C. J. Cassady, D. B. Jacobson, and B. S. Freiser, J. Am. Chem. Soc. 105 (1983) 6320-1.
- 15. T. A. Bazhenova, R. M. Lobkovskaya, R. P. Shibaeva, A. E. Shilov, A. K. Shilova, M. Gruselle, G. Leny, and B. Tchoubar, J. Organometal. Chem. 244 (1983) 265-72. T. A. Bazhenova, R. M. Lobskovskaya, R. P. Shibaeva, A. K. Shilova, M. Gruselle, G. Leny, and E. Deschamps, J. Organo-
- 16. metal. Chem. 244 (1983) 375-82. K. J. Lattermann and W. Seidel, Z. Chem. 23 (1983) 31.
- 17.
- H. Tom Dieck and R. Diercks, Angew. Chem. 95 (1983) 801-2. 18.
- P. Cocolios, G. Lagrange, and R. Guilard, J. Organometal. 19. Chem. 253 (1983) 65-79.
- K. L. Kunze and P. R. Ortiz de Montellano, J. Am. Chem. Soc. 20. 105 (1983) 1380-1.
- 21. H. H. Karsch, Chem. Ber. 116 (1983) 1656-68.
- 22. H. Azizian and R. H. Morris, Inorg. Chem. 22 (1983) 6-9.
- 23. P. G. Fuochi, Q. G. Mulazzani, G. Pilloni, and G. Zotti, Inorg. Chim. Acta 68 (1983) 195-200.
- 24. J. P. Collman, J. I. Brauman, B. L. Iverson, J. L. Sessler, R. M. Morris, and Q. H. Gibson, J. Am. Chem. Soc. 105 (1983) 3052-64 .
- J. P. Collman, J. I. Brauman, K.M. Doxsee, J.L. Sessler, R. 25. M. Morris, and Q. H. Gibson, Inorg. Chem. 22 (1983) 1427-32.
- M. Momenteau, B. Loock, D. Lavalette, C. Tetreau, and J. Mispelter, J. Chem. Soc., Chem. Comm. (1983) 962-4.
 E. A. Kerr, H. C. Mackin, and N. T. Yu, Biochemistry 22 26.
- 27. (1983) 4373-9.
- 28. F. Pomposo and D. V. Stynes, Inorg. Chem. 22 (1983) 569-71.
- P. J. Marini, K. S. Murray, and B. O. West, J. Chem. Soc., 29. Dalton Trans. (1983) 143-51.
- T. Perkins, J. D. Satterlee, and J.H. Richards, J. Am. 30. Chem. Soc. 105 (1983) 1350-4.
- 31. B. M. Hoffman and P. D. Sima, J. Am. Chem. Soc. 105 (1983)

1776-78.

- 32. D. Sellmann and U. Kleine-Kleffmann, J. Organometal. Chem. 247 (1983) 307-20.
- D. Sellmann and U. Kleine-Kleffmann, J. Organometal. Chem. 33. 258 (1983) 315-29.
- 34. J. L. A. Roustan, A. Forgues, J. Y. Merour, N. D. Venayak, and B. A. Morrow, Can. J. Chem. 61 (1983) 1339-46.
- M. Cygler, F. R. Ahmed, A. Forgues, and J. L. A. Roustan, Inorg. Chem. 22 (1983) 1026-30. 35.
- 36. H. Brunner and W. Miehling, Angew. Chem. 95 (1983) 162.
- F. J. Lalor and L. H. Brookes, J. Organometal. Chem. 251 37. (1983) 327-31.
- L. Mordenti, J. L. Roustan, and J. G. Riess, Organometal-38. lics 2 (1983) 843-5.
- J. Ellermann and W. Wend, J. Organometal. Chem. 258 (1983) 39. 21-34.
- 40. H. C. Ashton and A. R. Manning, Inorg. Chim. Acta 71 (1983) 163-7.
- 41. H. Le Bozec and P. H. Dixneuf, J. Chem. Soc., Chem. Comm. (1983) 1462-3.
- 41a. H. Stolzenberg and W. P. Fehlhammer, J. Organometal. Chem. 246 (1983) 105-14.
- 42. H. C. Ashton and A. R. Manning, Inorg. Chem. 22 (1983) 1440-5.
- 43. P. Conway, S. M. Grant, A. R. Manning, and F. S. Stephens, Inorg. Chem. 22 (1983) 3714-21.
- 44.
- S. Vancheesan, Indian J. Chem., Sect. A 22A (1983) 54-5. D. Sellman, G. Lanzrath, G. Huttner, L. Zsolnai, C. Krueger, 45. and K. H. Claus, Z. Naturforsch B 38B (1983) 961-81.
- K. J. Reimer, C. A. Sibley, and J. R. Sams, Soc. 105 (1983) 5147-9. 46. J. Am. Chem.
- 47. K. Fischer and M. Hanack, Angew. Chem. 95 (1983) 741-2.
- 48. M. Pankowski and M. Bigorgne, J. Organometal. Chem. 251 (1983) 33-8.
- 49. G. Reichenbach, G. Cardaci, and G. Bellachioma, Congr. Naz. Chim. Inorg., [Atti], 16th (1983) 22-5; Chem. Abstr. 100: 121307x.
- 50. G. Bellachioma, G. Cardaci, and G. Reichenbach, J. Chem. Soc., Dalton Trans. (1983) 2593-8.
- 51. G. Cardaci, G. Bellachioma, and P. Zanazzi, Polyhedron 2 (1983) 967-8.
- 52. C. R. Jablonski and Y. P. Wang, Inorg. Chim. Acta 69 (1983) 147-53.
- 53. S. P. Modi and J. D. Atwood, Inorg. Chem. 22 (1983) 26-8.
- T. Boselli, A. Mangia, C. Pelizzi, and G. Predieri, J. 54. Chromatogr. 265 (1983) 347-52.
- R. N. Bagchi, A. M. Bond, C. L. Heggie, T. L. Henderson, E. Mocellin, and R. A. Seikel, Inorg. Chem. 22 (1983) 3007-12. 55.
- 56. R.E. Stevens and W. L. Gladfelter, Inorg. Chem. 22 (1983) 2034-42.
- 57. K. H. Pannell, Y. S. Chen, K. Belknap, C. C. Wu, I. Bernal, M. W. Creswick, and H. N. Huang, Inorg. Chem. 22 (1983) 418-27.
- 58. G. W. Harris, J. C. A. Boeyens, and N. J. Coville, Acta Cryst. Sect. C: Cryst. Struct. Commun. C39 (1983) 1180-2.
- 59. M. W. Kekkes, D. J. Stufkens, and A. Oskam, J. Chem. Soc., Dalton Trans. (1983) 439-45.
- R. Battaglia, C. C. Frazier, III, H. Kisch, and C. Krueger, Z. Naturforsch.B 38B (1983) 648-54. 60.
- 61.
- R. L. De, J. Organometal. Chem. 243 (1983) 331-7. R. B. King, T. W. Lee, and J. H. Kim, Inorg 62a. R. B. Inorg. Chem. 22

(1983) 2964-7.

- 62b. D. P. Bauer and J. K. Ruff, Inorg. Chem. 22 (1983) 1686-9. 63. R. B. King and M. Shimura, J. Organometal. Chem. 256 (1983) 71-3.
- 64a. K.M. Flynn, M. M. Olmstead, and P. P. Power, J. Am. Chem. Soc. 105 (1983) 2085-6.
- 64b. K. M. Flynn, H. Hope, B. D. Murray, M. M. Olmstead, and P. P. Power, J. Am. Chem. Soc. 105 (1983) 7750-1.
- 65. K. M. Flynn, B. D. Murray, M. M. Olmstead, and P. P. Power, J. Am. Chem. Soc. 105 (1983) 7460-1.
- R. L.Keiter, A. L. Rheingold, J. J. Hamerski, and C. K. Castle, Organometallics 2 (1983) 1635-9. L. R. Martin, F. W. B. Einstein, and R. K. Pomeroy, Inorg. Chem. 22 (1983) 1959-61. 66.
- 67.
- 68. M. C. Bohm, Inorg. Chem. 22 (1983) 83-92.
- M. C. Bohm, Inorg. Chim. Acta 68 (1983) 63-67. 69.
- 70. A. Veillard and A. Dedieu, Theor. Chim. Acta 63 (1983) 339-48.
- 71. R. A. Jones and M. H. Seeberger, J. Chem. Soc., Dalton Trans. (1983) 181-4.
- I. I. Guerus and Yu. L. Yagupolskii, J. Organometal. Chem. 72. 247 (1983) 81-7.
- B. A. Sosinsky, R. G. Shong, B. J. Fitzgerald, N. Norem, and 73. C. O'Rourke, Inorg. Chem. 22 (1983) 3124-9.
- G. P. Boldrini, G. Cainelli, and A. Umani-Ronchi, J. Organo-metal. Chem. 243 (1983) 195-8. 74.
- W. Tam, M. Marsi, and J. A. Gladysz, Inorg. Chem. 22 (1983) 75. 1413-21.
- W. H. Tamblyn and R. E. Waltermire, Tetrahedron Lett. 24 (1983) 2803-6. 76.
- 77. G. Georg and T. Durst, J. Org. Chem. 48 (1983) 2092-5.
- Y. W. Chan, M. W. Renner, and A. L. Balch, Organometallics 2 78. (1983) 1888-9.
- 79. J-P.Battioni, D. Lexa, D. Mansuy, and J-M. Saveant, J. Am. Chem. Soc. 105 (1983) 207-15.
- H. Nakatsuji, J. Ushio, S. Han, and T. Yonezawa, J. Am. Chem. 80. Soc. 105 (1983) 426-34.
- H. Nakazawa, D. L. Johnson, and J. A. Gladysz, Organometal-lics 2 (1983) 1846-51. 81.
- 82. M. F. Semmelhack and R. Tamura, J. Am. Chem. Soc. 105 (1983) 4099-100.
- Organometallics 2 (1983) 1044-6. 83. W. Petz,
- 84. M. F. Semmelhack and R. Tamura, J. Am. Chem. Soc. 105 (1983) 6750-2.
- L.L. Costanzo, S. Giuffrida, G. De Guidi, and S. Pistara, 85. Inorg. Chim. Acta 73 (1983) 165-7.
- 86. A. R. Koray, J. Organometal. Chem. 243 (1983) 191-3.
- T-Y. Luh, K. S. Lee, and S. W. Tam, J. Organometal. Chem. 248 (1983) 221-4. 87.
- 88. G. Tanguy, B. Weinberger, and H. Des Abbayes, Tetrahedron Lett. 24 (1983) 4005-8.
- B. M. Peake, M. C. R. Symons, and J. L. Wyatt, 89. J. Chem. Soc., Dalton Trans. (1983) 1171-5.
- V. N. Babin, Yu. A. Belousov, V. V. Gumenyuk, R. M. Salimov, 90. R. B. Materikova, and N. S. Kochetkova, J. Organometal. Chem. 241 (1983) C41-4.
- K. S. Suslick, J. W. Goodale, P. F. Schubert, and H. H. 91. Wang, J. Am. Chem. Soc. 105 (1983) 5781-5.
- A. J. Ouderkirk, P. Wermer, N. L. Schultz, and E. Weitz J. Am. Chem. Soc. 105 (1983) 3354-5. 92.
- R. G. Gasanov, L. V. Ivanova, and R. Kh. Freidlina, Izv. 93.

Akad. Nauk SSSR, Ser. Khim. (1983) 1045-53; Chem. Abstr. 99:45947z.

- R. J. P. Corriu, V. Huynh, J. J. E. Moreau, and M. Pataud-Sat, J. Organometal. Chem. 255 (1983) 359-64. 94.
- 95. D. B. Beach and W. L. Jolly, Inorg. Chem. 22 (1983) 2137-9.
- R. L. DeKock, P. Deshmukh, J. S. Plotkin, and S. G. Shore, 96. J.Am. Chem. Soc. 105 (1983) 815-22.
- J. C. Mitchener and M. S. Wrighton, J.Am. Chem. Soc. 105 97. (1983) 1065-7.
- S. Komiya, H. Minato, T. Ikariya, T. Yamamoto, and A. Yamamo-98. to, J. Organometal. Chem. 254 (1983) 83-8.
- M. Cosandey, M. Von Bueren, and H. J. Hansen, Helv. Chim. 99. Acta 66 (1983) 1-18.
- 100. H. W. Fruehauf, F. Seils, M. J. Romao, and R. J. Goddard, Angew. Chem. 95 (1983) 1014-05.
- 101. Yu. A. Belousov, V. V. Gumenyuk, V. N. Babin, N. S. Kochetkova, and S. P. Solodovnikov, Sov. J. Coord. Chem. 9 (1983) 467-72. (Orig. pp. 819-24). G. Cardaci, J. Organometal. Chem. 244 (1983) 153-7.
- 102.
- 103. A. Salzer and A. Hafner, Helv. Chim. Acta 66 (1983) 1774-85.
- 104. N. G. Connelly, A. R. Lucy, and M. W. Whiteley, J. Chem. Soc., Dalton Trans. (1983) 117-19.
- J.C. Calabrese, S. D. Ittel, H. S. Choi, S. G. Davis, and 105. D. A. Sweigart, Organometallics 2 (1983) 226-9.
- K. J. Jens, T. Valeri, and E. Weiss, Chem. Ber. 116 (1983) 106. 2872-80.
- 107. A. J. Pearson, S. H. Cole, and B. Chen, J.Am. Chem. Soc. 105 (1983) 4483-4.
- 108. A. S. Batsanov and Yu. T. Struchkov, J. Organometal. Chem. **248** (1983) 101-6.
- 109. G. D. Annis, E. M. Hebblethwaite, S. T. Hodgson, D. M. Hollinshead, and S. V. Ley, J. Chem. Soc., Perkin Trans. I (1983) 2851~6.
- G. Schiavon and C. Paradisi, J. Organometal. Chem. 243 110. (1983) 351-8.
- 111. T. Akiyama, F-W. Grevels, J. G. A. Reuvers, and P. Ritterskamp, Organometallics 2 (1983) 157-60.
- J. A. Mondo and J. A. Berson, J.Am. Chem. Soc. 105 (1983) 112. 3340-1.
- 113. M. C. Bohm, Theochem. 9 (1983) 73-92.
- 114. J. W. Chinn, Jr. and M. B. Hall, J.Am. Chem. Soc. 105 (1983) 4930-1.
- J. W. Chinn, Jr. and M. B. Hall, Inorg. Chem. 22 (1983) 115. 2759-66.
- 116. P. Diehl, F. Moia, H. Boesiger, and J. Wirz, J. Mol. Struct. **98** (1983) 297-308.
- 117. W. A. Herrmann, C. E. Barnes, R. Serrano, and B. Koumbouris, J. Organometal. Chem. 256 (1983) C30-4.
- P. E. Riley and R. E. Davis, Organometallics 2 (1983) 286-118. 92.
- 119. D. Kawka, P. Mues, and E. Vogel, Angew. Chem. 95 (1983) 1006.
- S. G. Davies, S. D. Moon, S. J. Simpson, and S. E. Thomas, 120. J. Chem. Soc., Dalton Trans. (1983) 1805-6.
- S. G. Davies, J. Hibberd, and S. J. Simpson, metal. Chem. 246 (1983) C16-8. 121. J. Organo-
- 122. E. Luppold and W. Winter, Chem. Ber. 116 (1983) 1923-37.
- N. Bild, E. R. F. Gesing, C. Quiquerez, and A. Wehrli, J. Organometal. Chem. **248** (1983) 85-100. 123.
- 124a. A. Laporterie, H. Iloughmane and J. Dubac, J. Organometal.

Chem. 244 (1983) C12-6.

- 124b. A. Laporterie, H. Iloughmane, and J. Dubac, Tetrahedron Lett. 24 (1983) 3521-2.
- G. T. Burns, E.Colomer and R. J. P. Corriu, Organometal-125. lics 2 (1983) 1901-3.
- 126. D. Farcasiu and G. Marino, J. Organometal. Chem. 253 (1983) 243-8.
- 127. P. Eilbracht and R. Jelitte, Chem. Ber. 116 (1983) 243-53.
- T. Mitsudo, Y. Ogino, Y. Komiya, H. Watanabe, and Y. Wata-abe, Organometallics 2 (1983) 1202-7. 128. nabe,
- M. Franck-Neumann, M. P. Heitz, D. Martina, and A. De Cian, Tetrahedron Lett. 24 (1983) 1611-4. 129.
- 130. M. F. Semmelhack and J. W. Herndon, Organometallics 2 (1983) 363-72.
- 131. M. F. Semmelhack, J. W. Herndon, and J. P. Springer, J.Am. Chem. Soc. 105 (1983) 2497-9.
- J. G. Atton and L. A. P. Kane-Maguire, J. Organometal. 132. Chem. 246 (1983) C23-6.
- A. J. Pearson and I. C. Richards, Tetrahedron Lett. 24 133. (1983) 2465-8.
- G. R. John, L. A. P. Kane-Maguire, T. I. Odiaka, and C. 134. Eaborn, J. Chem. Soc., Dalton Trans. (1983) 1721-7.
- A. J. Pearson, T. R. Perrior, and D. A. Griffin, J. Chem. 135. Soc., Perkin Trans. I (1983) 625-31.
- M. Chandler, P. J. Parsons, and E. Mincione, Tetrahedron 136. Lett. 24 (1983) 5781-4.
- B. F. Anderson and G. B. Robertson, Acta Cryst. C39 (1983) 137. 428-30.
- L. K. K. LiShingMan, J. G. A. Reuvers, J. Takats, and G. 138. Deganello, Organometallics 2 (1983) 28-39.
- 139. R. C. Kerber, J. Organometal. Chem. 254 (1983) 131-42.
- I. L. Fragala, J. Takats, and M. A. Zerbo, Organometallics 140. 2 (1983) 1502-4.
- Z. Goldschmidt and S. Antebi, J. Organometal. Chem. 259 141. (1983) 119-25.
- 142. T. Ishizu, K. Harano, N. Hori, M. Yasuda, and K. Kanematsu, Tetrahedron, 39 (1983) 1281-9.
- Z. Goldschmidt, Y. Bakal, D. Hoffer, A. Eisenstadt, P. F. 143. Lindley, J. Organometal. Chem. 258 (1983) 53-62. N. G. Connelly, A. R. Lucy, and J. B. Sheridan,
- 144. J. Chem. Soc., Dalton Trans. (1983) 1465-8.
- M. Hails, B. E. Mann, C. M. Spencer, J. Chem. Soc., Chem. 145. Comm. (1983) 120-2.
- R. B. Hitam, R. Narayanaswamy, and A. J. Rest, J. Chem. 146. Soc., Dalton Trans. (1983) 1351-6.
- N. G. Connelly, A. R. Lucy, and M. W. Whiteley, J. Chem. 147. Soc., Dalton Trans. (1983) 111-5.
- S. S. Ullah, S. E. Kabir, M. Begum, and M. Mohibullah, J. 148. Bangladesh Acad. Sci. 6 (1982) 53-60.
- G. Davidson and G. E. Gadd, Proc. 8th Int. Conf. Raman 149. Spectrosc. (1982) 637-8.
- 150. P. Eilbracht, M. Acker, and W. Totzauer, Chem. Ber. 116 (1983) 2378-40.
- R. Antonioletti, A. DeMico, F. D'Onofrio, G. Pincatelli, 151. and E. Castagnino, Tetrahedron 39 (1983) 1355-8.
- J. Clelland and G. R. Knox, J. Chem. Soc., Chem. Comm. 152. (1983) 1219-20.
- 153. I. Noda, H. Yasuda, and A. Nakamura, Organometallics 2 (1983) 1207-14.
- I. Noda, H. Yasuda, and A. Nakamura, 447-66. 154.
- 155. T. W. Smith and D. J. Luca, Polym. Sci. Technol. (Plenum)

21 (1983) 85-95; Chem. Abstr. 100:86203m.

- 156. T. W. Smith and D. J. Luca, Org. Coat. Appl. Polym. Sci. Proc. 46 (1981) 358-61; Chem. Abstr. 99:195684a.
- M. Alini, R. Roulet, and G. Chapuis, Helv. Chim. Acta, 66 157. (1983) 1624-9.
- 158.
- R. Gabioud and P. Vogel, Helv. Chim. Acta 66 (1983) 1134-47. R. Gabioud and P. Vogel, Tetrahedron Lett. 24 (1983) 1983-6. 159.
- U. Haenisch, E. Tagliaferri, R. Roulet, and P. Vogel, Helv. 160. Chim. Acta, 66 (1983) 2182-90.
- 161. M. Franck-Neumann, M. P. Heitz, and D. Martina, Tetrahedron Lett. 24 (1983) 1615-6.
- A. Hafner, J. H. Bieri, R. Prewo, W. Von Philipsborn, and 162. A. Salzer, Angew. Chem. 95 (1983) 736-7.
- A. Monpert, J. Martelli, R. Gree, and R. Carrie, Nouv. J. 163. Chim. 7 (1983) 345-6.
- M. F. Semmelhack, J. W. Herndon, and J. K. Liu, Organometal-164. lics 2 (1983) 1885-8.
- M. W. Kokkes, D. J. Stufkens, and A. Oskam, J. Chem. Soc., 165. Chem. Comm. (1983) 369-71.
- E. J. S. Vichi, P. R. Raithby, and M. McPartlin, J. Orga-166. nometal. Chem. 256 (1983) 111-24.
- D. A. Brown, J. P. Chester, and N. J. Fitzpatrick, J. Indian 167. Chem. Soc. 59 (1982) 1273-5.
- B. M. R. Bandara, A. J. Birch, L. F. Kelly, and T. C. Khor, 168. Tetrahedron Lett. 24 (1983) 2491-4.
- J. A. S. Howell, M. J. Thomas, J. Chem. Soc., Dalton 169. Trans. (1983) 1401-9.
- 170. J. A. S. Howell and M. J. Thomas, J. Organometal. Chem. 247 (1983) C21-3.
- D. R. Wilson, R. D. Ernst, and T. H. Cymbaluk, Organometallics 2 (1983) 1220-8.
- S. J. Severson, T. H. Cymbaluk, R. D. Ernst, J. M. Higashi, and R. W. Parry, Inorg. Chem. 22 (1983) 3833-4. 172.
- A. A. Koridze, N. M. Astakhova, and P. V. Petrovskii, J. 173. Organometal. Chem. 254 (1983) 345-60.
- C. Lapinte and D. Astruc, 174. J. Chem. Soc., Chem. Comm. (1983) 430-1.
- W. Angerer, K. Fiederling, G. Grotsch, and W. Malisch, Chem. Ber. 116 (1983) 3947-50. 175.
- 176. S. G. Davies, J. Hibberd, S. J. Simpson, and O. Watts, J. Organometal. Chem. 241 (1983) C31-3.
- 177. S. G. Davies, S. J. Simpson, and S. E. Thomas, J. Organometal. Chem. 254 (1983) C29-32.
- A. A. Barkatin and A. K. Baev, Khim. Khim. Tekhnol. (Minsk) 178. 16 (1983) 44-9; Chem. Abstr. 100:121312v.
- N. J. Coville, M. O. Albers, and E. Singleton, 179. J. Chem. Soc., Dalton Trans. (1983) 947-53.
- R. E. Cramer, K. T. Higa, S. L. Pruskin, and J. W. Gilje, 180. J. Am. Chem. Soc. 105 (1983) 6749-50.
- 181. B. Callan and A. R. Manning, J. Organometal. Chem. 252 (1983) C81-2.
- P. Legzdins, D. T. Martin, C. R. Nurse, and B. Wassink, Organometallics 2 (1983) 1238-44. 182.
- 183. A. R. Manning, G. McNally, R. Davis, and C. C. Rowland, J. Organometal. Chem. 259 (1983) C15-6.
- R. H. Hooker, K. A. Mahmoud, and A. J. Rest, Soc., Chem. Comm. (1983) 1022-4. 184. J. Chem.
- 185. D. R. Tyler, M. A. Schmidt, and H. B. Gray, J. Am. Chem. Soc. 105 (1983) 6018-21.
- 186. McNally, P. T. Murray, and A. R. Manning, J. Organome-G. tal. Chem. 243 (1983) C87-8.

- H. H. Wei and K. T. Dai, J. Chin. Chem. Soc. (Taipei) 30 187. (1983) 131-2.
- B. Callan and A. R. Manning, J. Chem. Soc., Chem. Comm. 188. (1983) 263-4.
- 189. K. D. Janda, W. W. McConnell, G. O. Nelson, and M. E. Wright, J. Organometal. Chem. 259 (1983) 139-43.
 190. V. W. Day, M. R. Thompson, G. O. Nelson, and M. E. Wright, Organometallics 2 (1983) 494-500.
 191. M. E. Wright, T. M. Mezza, G. O. Nelson, and N. R. Armstrong, Organometallics 2 (1983) 1711-8.
- strong, Organometallics 2 (1983) 1711-8. C. P. Casey, R. F. Jordan, and A. L. Rheingold, J. Am. Chem.
- 192. Soc. 105 (1983) 665-7.
- 193. R. B. Petersen, J. M. Ragosta, G. E. Whitwell II, and J. M. Burlitch, Inorg. Chem. 22 (1983) 3407-15.
- 194. W. Ries and W. Malisch, J. Organometal. Chem. 241 (1983) 321-31.
- L. Parkanyi, K. H. Pannell, and C. Hernandez, J. Organome-195. tal. Chem. 252 (1983) 127-32.
- D. F. Marten and S. M. Wilburn, J. Organometal. Chem. 251 (1983) 71-8. 196.
- G. Thum, W. Ries, D. Greissinger, and W. Malisch, J. Organo-metal. Chem. 252 (1983) C67-72. 197.
- 198. P. J. Domaille and W. H. Knoth, Inorg. Chem. 22 (1983) 818-22.
- 199. D. Miholova and A. A. Vlcek, Inorg. Chim. Acta 73 (1983) 249-54.
- 200. A. Castel, P. Riviere, J. Satge, J. J. E. Moreau, and R. J. P. Corriu, Organometallics 2 (1983) 1498-1502.
- 201. M. Yu. Antipin, G. G. Aleksandrov, Yu. T. Struchkov, Yu. A. Belousov, V. N. Babin, and N. S. Kochetkova, Inorg. Chim. Acta, 68 (1983) 229-32.
- B. Deppisch and H. Schafer, Acta Cryst. C39 (1983) 975-6. 202.
- B. Lukas, R. M. G. Roberts, J. Silver, and A. S. Wells, J. Organometal. Chem. 256 (1983) 103-10. 203.
- 204. D. Catheline and D. Astruc, J. Organometal. Chem. 248 (1983) C9-12.
- 205. S. G. Davies, S.J. Simpson, H. Felkin, F. Tadj, and O. Watts, J. Chem. Soc., Dalton Trans. (1983) 981-5. H. R. Allcock, L. J. Wagner, and M. L. Levin, J. Am. Chem.
- 206. Soc. 105 (1983) 1321-7.
- R. A. Nissan, M. S. Connolly, M. G. L. Mirabelli, R. R. Whittle, and H. R. Allcock, J. Chem. Soc., Chem. Comm. 207. (1983) 822-4.
- 208. W. Angerer, M. Lukasz, and W. Malisch, J. Organometal. Chem. 253 (1983) C36-42.
- D. Greissinger, W. Malisch, and H-A. Kaul, J. Organometal. 209. Chem. 252 (1983) C23-8.
- H-A. Kaul, D. Greissinger, W. Malisch, H-P. Klein, and U. 210. Thewalt, Angew. Chem. 95 (1983) 56.
- 211. V. S. Kaganovich and M. I. Rybinskaya, U.S.S.R. SU 992,521. From Otkrytiya, Izobret., Prom. Obraztsy, Tovarnye Znaki (1983) 109-10; Chem. Abstr. **99**:22707g.
- M. B. Humphrey, W. M. Lamanna, M. Brookhart, and G. R. Husk, Inorg. Chem. 22 (1983) 3355-8. P. M. Treichel, L. D. Rosenhein, and M. S. Schmidt, Inorg. 212.
- 213. Chem. 22 (1983) 3960-5.
- 214. P. M. Treichel, M. S. Schmidt, and S. D. Koehler, J. Organometal. Chem. 258 (1983) 209-16.
- M. A. El-Hinnawi, A. A. Aruffo, B. D. Santarsiero, D. R. 215. McAlister, and V. Schomaker, Inorg. Chem. 22 (1983) 1585-90.
- 216. J. M. Shreeve and S. M. Williamson, J. Organometal. Chem.

249 (1983) C13-5.

- M. C. R. Symons, S. W. Bratt, and J. L. Wyatt, J. Chem. 217. Soc., Dalton Trans. (1983) 1377-83.
- R. H. Magnuson, R. Meirowitz, S. J. Zulu, and W. P. Giering, 218. Organometallics 2 (1983) 460-2.
- S. J. McLain, J. Am. Chem. Soc. 105 (1983) 6355-7. 219.
- J. A. Labinger, J. N. Bonfiglio, D. L. Grimmett, S. T. Masuo, E. Shearin, and J. S. Miller, Organometallics 2 (1983) 733-40. 220.
- K. Sunkel, K. Schloter, W. Beck, K. Ackermann, and U. 221. Schubert, J. Organometal. Chem. 241 (1983) 333-42.
- K. Sunkel, U. Nagel, and W. Beck, J. Organometal. Chem. 222. 251 (1983) 227-43.
- H. Brunner, B. Hammer, I. Bernal, and M. Draux, Organo-223. metallics 2 (1983) 1595-603.
- T. C. Flood, K. D. Campbell, H. H. Downs, and S. Nakanishi, 224. Organometallics 2 (1983) 1590-5.
- 225. M. D. Seidler and R. G. Bergman, Organometallics 2 (1983) 1897-9.
- T. W. Leung, G. C. Christoph, and A. Wojcicki, Inorg. Chim. Acta 76 (1983) L281-2. 226.
- R. Baker, V. B. Rao, and E. Erdik, J. Organometal. Chem. 227. 243 (1983) 451-60.
- 228. M. E. Wright, Organometallics 2 (1983) 558-60.
- B. D. Fabian and J. A. Labinger, Organometallics 2 (1983) 229. 659-64.
- S. G. Davies, O. Watts, N. Aktogu, and H. Felkin, nometal. Chem. 243 (1983) C51-3. J. Orga-230.
- 231. R. J. Angelici and T. Formanek, Inorg. Chim. Acta 76 (1983) **L9-11.**
- L. S. Liebeskind and M. E. Welker, Organometallics 2 232. (1983) 194-5.
- G. J. Baird and S. G. Davies, J. Organometal. Chem. 248 233. (1983) C1-3.
- G. J. Baird, J. A. Bandy, S. G. Davies, and K. Prout, J. Chem. Soc., Chem. Comm. (1983) 1202-3. 234.
- T. Yu. Orlova, V. N. Setkina, V. F. Sizoi, and D. N. Kursa-nov, J. Organometal. Chem. 252 (1983) 201-4. 235.
- S. J. Doig, R. P. Hughes, S. L. Patt, D. E. Samkoff, and W. Smith, Organometallics 250 (1983) C1-4. 236. L. Smith,
- 237. V. B. Rybakov, L. A. Aslanov, V. M. Ionov, and S. A. Eremin, Zh. Strukt. Khim. 24 (1983) 74-82.
- V. B. Rybakov, L. A. Aslanov, V. M. Ionov, and S. A. Eremin, 238. Zh. Strukt. Khim. 24 (1983) 100-14.
- 239. R. B. Hitam, R. Narayanaswamy, and A. J. Rest, J. Chem. Soc., Dalton Trans. (1983) 615-8.
- 240. Y. C. Lin, D. Milstein, and S. S. Wreford, Organometallics 2 (1983) 1461-3.
- S. Pelling, C. Botha, and J. R. Moss, J. Chem. Soc., 241. Dalton Trans. (1983) 1495-501.
- 242. J. E. Jensen, L. L. Campbell, S. Nakanishi, and T. C. ood, J. Organometal. Chem. 244 (1983) 61-72. Flood,
- 243. A. Stasunik and W. Malisch, J. Organometal. Chem. 247 (1983) C47-52.
- S. Voran and W. Malisch, Angew. Chem. 95 (1983) 151. 244.
- 245. S. Abbott, S. G. Davies, and P. Warner, J. Organometal. Chem. 246 (1983) C65-8.
- 246. G. Grotsch and W. Malisch, J. Organometal. Chem. 246 (1983) C49-52.
- 247. G. Grotsch and W. Malisch, J. Organometal. Chem. 246 (1983) C42-8 .

- 248. T. W. Bodnar and A. R. Cutler, J. Am. Chem. Soc. 105 (1983) 5926-8.
- 249. C. P. Casey and W. H. Miles, J. Organometal. Chem. 254 (1983) 333-7.
- M. Brookhart, J. R. Tucker, and G. R. Husk, J. Am. Chem. Soc. 105 (1983) 258-64. 250.
- G. R. Husk and M. S. Brookhart, Report 1983 ARO-18782.5-CH; 251. Order No. AD-A133541 from NTIS; From Gov. Rep. Announce. Index (U.S.A.) 84 (1984) 110; Chem. Abstr. 100:192041s.
- M. Brookhart, D. Timmers, J. R. Tucker, G. D. Williams, G. 252. R. Husk, H. Brunner, and B. Hammer, J. Am. Chem. Soc. 105 (1983) 6721-3.
- Y. S. Yu and R. J. Angelici, Organometallics 2 (1983) 253. 1018-26.
- 254. Y. S. Yu and R. J. Angelici, Organometallics 2 (1983) 1583-9.
- L. Busetto, M. Monari, A. Palazzi, V. Albano, and F. Demar-255. tin, J. Chem. Soc., Dalton Trans. (1983) 1849-55.
- M. M. Singh and R. J. Angelici, Angew. Chem. 95 (1983) 163. 256.
- 257. R. Ferede and N. T. Allison, Organometallics 2 (1983) 463-5.
- 258. M. D. Radcliffe and W. M. Jones, Organometallics 2 (1983) 1053-5.
- Y. Ishii, T. Kagayama, A. Akihiro, and M. Ogawa, Bull. Chem. Soc. Jpn. 56 (1983) 2861-2. 259.
- W. W. McConnell, G. O. Nelson, and M. E. Wright, Inorg. 260. Chem. 22 (1983) 1689-91.
- 261. P. Lennon and M. Rosenblum, J. Am. Chem. Soc. 105 (1983) 1233-41.
- D. L. Reger, K. A. Belmore, J. L. Atwood, and W. E. Hunter, 262. J. Am. Chem. Soc. 105 (1983) 5710-1.
- 263. D. L. Reger, K. A. Belmore, E. Mintz, N. G. Charles, E. A. H. Griffith, and E. L. Amma, Organometallics 2 (1983) 101-5.
- 264. C. M. Lukehart and K. Srinivasan, Organometallics 2 (1983) 1640-2.
- M. I. Bruce, J. K. Walton, M. L. Williams, J. M. Patrick, 265. B. W. Skelton, and A. H. White, J. Chem. Soc., Dalton Trans. (1983) 815-20.
- L. I. Zakharkin, V. V. Kobak, and V. A. Antonovich, Izv. Akad. Nauk SSSR, Ser. Khim. (1983) 2809-14; Chem. Abstr. 266. 100:210080k.
- 267. J. Edwin, M. C. Bohm, N. Chester, D. M. Hoffman, R. Hoffmann, H. Pritzkow, W. Siebert, K. Stumpf, and H. Wadepohl, Organometallics 2 (1983) 1666-74.
- G. E. Herberich, J. Hengesbach, G. Huttner, A. Frank, and U. Schubert, J. Organometal. Chem. 246 (1983) 141-9.
- J. C. Green, M. R. Kelly, M. P. Payne, E. A. Seddon, D. 269. Astruc, J. R. Hamon, and P. Michaud, Organometallics 2 (1983) 211-8.
- R. B. Maynard, R. G. Swisher, and R. N. Grimes, Organometal-270. lics 2 (1983) 500-5.
- I. Pavlik and J. Klikorka, Proc. 9th Conf. Coord. Chem. (1983) 327-9; Chem. Abstr. 99:70936c. 271.
- J. P. Mariot, P. Michaud, S. Lauer, D. Astruc, A. X. Traut-272. wein, and F. Varret, J. Phys. (Les Ulis, France) 44 (1983) 1377-85; Chem. Abstr. 100:121310t. T. A. Albright, P. Hofmann, R. A. Hoffmann, C. P. Lillya, and P. A. Dobosh, J. Am. Chem. Soc. 105 (1983) 3396-411.
- 273.

274. A. Darchen, J. Chem. Soc., Chem. Comm. (1983) 768-9.

- J. R. Hamon and D. Astruc, J. Am. Chem. Soc. 105 (1983) 275. 5951-2.
- 276. T. P. Gill and K. R. Mann, Inorg. Chem. 22 (1983) 1986-91.

- 277. J. L. Schrenk, M. C. Palazzotto, and K. R. Mann, Inorg. Chem. 22 (1983) 4047-9.
- E. Roman, G. Valenzuela, L. Gargallo, and D. Radic, J. Polym. Sci., Polym. Chem. Ed. 21 (1983) 2057-65; Chem. Abstr. 278. 99:140101c.
- V. Guerchais and D. Astruc, J. Chem. Soc., Chem. Comm. 279. (1983) 1115-6.

C. C. Lee, K. J. Demchuk, U. S. Gill, and R. G. Sutherland, J. Organometal. Chem. 247 (1983) 71-80. 280.

- C. C. Lee, A. Piorko, B. R. Steele, U. S. Gill, and R. G. 281. Sutherland, J. Organometal. Chem. 256 (1983) 303-8.
- C. C. Lee, A. Piorko, and R. G. Sutherland, J. Organo-282. metal. Chem. 248 (1983) 357-64.
- G. E. Herberich and M. M. Kucharska-Jansen, J. Organo-283. metal. Chem. 243 (1983) 45-9.
- N. M. Kostic and R. F. Fenske, Organometallics 2 (1983) 284. 1319-25.
- R. G. Swisher, E. Sinn, and R. N. Grimes, Organometallics
- 286. R. P. Micciche and L. G. Sneddon, Organometallics 2 (1983) 674-8.
- Y. K. Chung, E. D. Honig, and D. A. Sweigart, J. Organome-287. tal. Chem. 256 (1983) 277-83.
- J. Elzinga and M. Rosenblum, Organometallics 2 (1983) 288. 1214-19.
- 289. H. W. Fruehauf, J. Chem. Res., Synop. (1983) 216-7.
- 290. A. S. Batsanov, L. V. Rybin, M. I. Rybinskaya, Yu. T. Struchkov, I. M. Salimgareeva, and N. G. Bogatova, J. Organometal. Chem. 249 (1983) 319-26.
- 291. D. Melzer and E. Weiss, J. Organometal. Chem. 255 (1983) 335-44.
- R. L. DeKock, E. J. Baerends, and A. Oskam, Inorg. Chem. 292. 22 (1983) 4158-9.
- D. G. Leopold and V. Vaida, J. Am. Chem. Soc. 105 (1983) 293. 6809-11.
- N. S. Nametkin, V. D. Tyurin, B. I. Kolobkov and A. M. Krapivin, Izv. Akad. Nauk SSSR, Ser. Khim. (1983) 1212-3; 294. Chem. Abstr. 99:122607t.
- 295. E. A. Chernyshev, O. V. Kuz'min, A. V. Lebedev, A. I. Gusev, M. G. Los, N. V. Alekseev, N. S. Nametkin, V. D. Tyurin, A. M. Krapivin et al., J. Organometal. Chem. 252 (1983) 143-8.
- D. Seyferth, G. G. Womack, and L. C. Song, Organometallics 296. 2 (1983) 776-9.
- T. C. W. Mak, L. Book, C. Chieh, M. K. Gallagher, L. C. 297. Song, and D. Seyferth, Inorg. Chim. Acta, 73 (1983) 159-64. D. Seyferth and B. W. Hames, Inorg. Chim. Acta 77 (1983)
- 298. L1-2.
- A. Winter, L. Zsolnai, and G. Huttner, J. Organometal. Chem. **250** (1983) 409-28. J. S. McKennis and E. P. Kyba, Organometallics 2 (1983) 299.
- 300. 1249-51.
- 301. H. Lang, L. Zsolnai, and G. Huttner, Angew. Chem. 95 (1983) 1016-7.
- S. Holand, F. Mathey, J. Fischer, and A. Mitschler, Orga-302. nometallics 2 (1983) 1234-38.
- G. Sennyey, F. Mathey, J. Fischer, and A. Mitschler, Orga-303. nometallics 2 (1983) 298-304.
- 304. P. M. Treichel and D. J. Berg, J. Organometal. Chem. 243 (1983) 315-321.
- 305. Y. F. Yu, J. Gallucci, and A. Wojcicki, J. Am. Chem. Soc.

105 (1983) 4826-8.

- 306. H. Vahrenkamp and D. Wolters, Angew. Chem. 95 (1983) 152-3.
- 307. H. Umland, F. Edelmann, D. Wormsbacher, and U. Behrens, Angew. Chem. 95 (1983) 148-9.
- 308. G. N. Mott and A. J. Carty, Inorg. Chem. 22 (1983) 2726-36. 309. G. N. Mott, N. J. Taylor, and A. J. Carty, Organometallics 309. 2 (1983) 447-52.
- 310. E. K. Lhadi, C. Mahe, H. Patin, and A. Darchen, J. Organometal. Chem. 246 (1983) C61-4.
- 311. A. Darchen, E. K. Lhadi, and H. Patin, J. Organometal. Chem. 259 (1983) 189-206.
- 312. E. K. Lhadi, H. Patin, A. Benoit, J. Y. Le Marouille, and A. Darchen, J. Organometal. Chem. 259 (1983) 321-35.
- D. Seyferth, G. B. Womack, L. C. Song, M. Cowie, and B. W. 313. Hames, Organometallics 2 (1983) 928-30.
- 314. G. M. Dawkins, M. Green, J. C. Jeffrey, C. Sambale, and F. G. A. Stone, J. Chem. Soc., Dalton Trans. (1983) 499-506.
- D. Seyferth, G. B. Womack, M. Cowie, and B. W. Hames, Orga-nometallics 2 (1983) 1696-8. 315.
- 316. R. Aumann, H. Heinen, G. Henkel, M. Dartmann, and B. Krebs, Z. Naturforsch. B, 38B (1983) 1325-31.
- 317. K. H. Pannell, A. J. Mayr, and D. VanDerveer, Organometallics 2 (1983) 560-2.
- A. I. Mikaya, V. G. Zaikin, V. V. Trusov, A. I. Nekhaev, 318. and V. D. Tyurin, J. Organometal. Chem. 254 (1983) 339-44.
- 319. N. S. Nametkin, V. D. Tyurin, A. I. Nekhaev, Yu. P. Sobolev, M. G. Kondrat'eva, A. S. Batsanov, and Yu. T. Struchkov, J. Organometal. Chem. 243 (1983) 323-30.
- N. Bild, E. R. F. Gesing, C. Quiquerez, and A. Wehrli, J. Chem. Soc., Chem. Comm. (1983) 172-3. 320.
- S. Aime, D. Osella, L. Milone, and A. Tiripicchio, Polyhed-321. ron 2 (1983) 77-81.
- M. Moll, H. Behrens, W. Popp, G. Liehr, and W. P. Fehlham-mer, Z. Naturforsch. B, **38B** (1983) 1446-53. 322.
- 323. B. K. Teo, V. Bakirtzis, and P. A. Snyder-Robinson, J. Am. Chem. Soc. 105 (1983) 6330-2.
- 324. S. C. Kao, C. H. Thiel, and R. Pettit, Organometallics 2 (1983) 914-7.
- 325.
- A. G. Orpen, J. Chem. Soc., Dalton Trans. (1983) 1427-31. C. P. Casey, S. R. Marder, and P. J. Fagan, J. Am. Chem. Soc. 105 (1983) 7197-8. 326.
- 327. C. P. Casey, P. J. Fagan, W. H. Miles, and S. R. Marder, J. Mol. Catal. 21 (1983) 173-88.
- 328. A. F. Dyke, S. A. R. Knox, M. J. Morris, and P. J. Naish, J. Chem. Soc., Dalton Trans. (1983) 1417-26.
- K. Jonas, G. Koepe, L. Schieferstein, R. Mynott, C. Kruger, 329. and Y-H. Tsay, Angew. Chem. 95 (1983) 637.
- 330.
- M. Mueller and H. Vahrenkamp, Chem. Ber. **116** (1983) 2322-6. H. Yamazaki, K. Yasufuku, and Y. Wakatsuki, Organometallics 331. 2 (1983) 726-32.
- D. A. Roberts, G. R. Steinmetz, M. J. Breen, P. M. Shulman, E. D. Morrison, M. R. Duttera, C. W. DeBrosse, R. R. Whittle, and G. L. Geoffroy, Organometallics 2 (1983) 846-55 332.
- 333. J. Ros and R. Mathieu, Organometallics 2 (1983) 771-2.
- 334. Y. Mugniere and C. Moise, J. Organometal. Chem. 248 (1983) C33-5.
- C. K. Chen and C. H. Cheng, Inorg. Chem. 22 (1983) 3378-82. 335.
- J. W. Kolis, E. M. Holt, and D. F. Shriver, J. Am. Chem. 336. Soc. 105 (1983) 7307-13.
- A. Ceriotti, L. Resconi, F. Demartin, G. Longoni, M. Manas-337. sero, and M. Sansoni, J. Organometal. Chem. 249 (1983) C35-7.

- J-B. NGuini Effa, B. Djebailli, J. Lieto, and J-P. Aune, J. 338. Chem. Soc., Chem. Comm. (1983) 408-9.
- 339. J. Takacs and L. Marko, J. Organometal. Chem. 247 (1983) 223-5.
- O. Stelzer, S. Hietkamp, and H. Sommer, Phosphorus Sulfur, 340. **18** (1983) 279-82,
- M. Lourdichi, R. Pince, F. Dahan, and R. Mathieu, Organo-341. metallics 2 (1983) 1417-22.
- W. K.Wong, K. W. Chiu, G. Wilkinson, A. M. R. Galas, M. 342. Thornton-Pett, and M. B. Hursthouse, J. Chem. Soc., Dalton Trans. (1983) 1557-63.
- 343. D. De Montauzon and R. Mathieu, J. Organometal. Chem. 252 (1983) C83-5.
- G. Granozzi, E. Tondello, M. Casarin, S. Aime, and D. Osel-344. 1a, Organometallics 2 (1983) 430-4.
- 345. M. I. Bruce, T. W. Hambley, and B. K. Nicholson, J. Chem. Soc., Dalton Trans. (1983) 2385-90.
- J. B. Keister, M. W. Payne, and M. J. Muscatella, Organo-metallics 2 (1983) 219-25. 346.
- P. Brun, G. M. Dawkins, M. Green, R. M. Mills, J. Y. Salaun, 347. F. G. A. Stone, and P. Woodward, J. Chem. Soc., Dalton Trans. (1983) 1357-62.
- 348. P. T. Chesky and M. B. Hall, Inorg. Chem. 22 (1983) 2998-3007.
- 349. A. Darchen, C. Mahe, and H. Patin, J. Organometal. Chem. 251 (1983) C9-12.
- 350. L. E. Bogan, Jr., D. A. Lesch, and T. B. Rauchfuss, J. Organometal. Chem. 250 (1983) 429-38.
- 351. D. A. Lesch and T. B. Rauchfuss, Inorg. Chem. 22 (1983) 1854-7.
- 352. E. Lindner and G. A. Weiss, J. Organometal. Chem. 244 (1983) C9-11.
- 353. E. Lindner, G. A. Weiss, W. Hiller, and R. Fawzi, J. Organo-metal. Chem. 255 (1983) 245-54.
- A. Winter, I. Jibril, and G. Huttner, J. Organometal. Chem. 247 (1983) 259-70. 354.
- 355. J. K. Kouba, E. L. Muetterties, M. R. Thompson, and V. W.
- Day, Organometallics 2 (1983) 1065-73. N. S. Nametkin, V. D. Tyurin, V. V. Trusov, and A. M. Krapivin, J. Organometal. Chem. 254 (1983) 243-7. 356.
- 357. K. H. Pannell, A. J. Mayr, and D. VanDerveer, J. Am. Chem. Soc. 105 (1983) 6186-8.
- S. Lu, N. Okura, T. Yoshida, and S. Otsuka, J. Am. Chem. 358. Soc. 105 (1983) 7470-1.
- 359. N. A. Ustynyuk, V. N. Vinogradova, V. N. Korneva, Yu. L. Slovokhotov, and Yu. T. Struchkov, Koord. Khim. 9 (1983) 631-7; Chem. Abstr. 99:70932y.
- M. Green, K. Marsden, I. D. Salter, F. G. A. Stone, and P. Woodward, J. Chem. Soc., Chem. Comm. (1983) 446-7. 360.
- L. Busetto, J. C. Jeffery, R. M. Mills, F. G. A. Stone, M. J. Went, and P. Woodward, J. Chem. Soc., Dalton Trans. 361. (1983) 101-9.
- J. Schneider and G. Huttner, Chem. Ber. 116 (1983) 917-37. 362.
- 363. H. Vahrenkamp, E. J. Wucherer, and D. Wolters, Chem. Ber. 116 (1983) 1219-39.
- 364. A. Ceriotti and G. Longoni, J. Chem. Soc., Dalton Trans. (1983) 1433-6.
- 365. A. A. Ioganson, O. N. Chimkova, N. A. Deikhina, A. B. Antonova, A. I Rubailo, and V. P. Selina, Izv. Akad. Nauk SSSR, Ser. Khim. (1983) 938-40; Chem. Abstr. 99:32167v.
- 366.M. Mueller and H. Vahrenkamp, Chem. Ber. 116 (1983) 2311-21.

366.M. Mueller and H. Vahrenkamp, Chem. Ber. 116 (1983) 2311-21. 367. M. Mueller and H. Vahrenkamp, Chem. Ber. 116 (1983) 2748-64. 368. M. Mueller and H. Vahrenkamp, Chem. Ber. 116 (1983) 2765-74.

- 369. I. L. Eremenko, A. A. Pasynskii, Yu. V. Rakitin, O. G. Ellert, V. M. Novotortsev, V. T. Kalinnikov, V. E. Shklover, and Yu. T. Struchkov, J. Organometal. Chem. **256** (1983) 291-301.
- D. F. Jones, P. H. Dixneuf, A. Benoit, and J-Y. Le Marouil-e, Inorg. Chem. 22 (1983) 29-33. 370. le,
- 371. S. Jensen, B. H. Robinson, and J. Simpson, J. Chem. Soc., Chem. Comm. (1983) 1081-2.
- D. E. Fjare, D. G. Keyes, and W. L. Gladfelter, 372. J. Organometal. Chem. 250 (1983) 383-394.
- 373. B. H. Freeland, N. C. Payne, M. A. Stalteri, and H. Van Leeuwen, Acta Crystallogr., Sect. C: Cryst. Struct. Commun, **C39** (1983) 1533-5.
- M. C. Grossel, R. P. Moulding, and K. R. Seddon, J. Organometal. Chem. 253 (1983) C50-4.
- 375. M. Castiglioni, R. Giordano, and E. Sappa, J. Organometal. Chem. 258 (1983) 217-34.
- F. Richter, H. Beurich, M. Muller, N. Gartner, and H. 376.
- Vahrenkamp, Chem. Ber. 116 (1983) 3774-93. P. D. Williams, M. D. Curtis, D. N. Duffy, and W. M. Butler, Organometallics 2 (1983) 165-7. 377.
- 378. T. P. Fehlner, C. E. Housecroft, and K. Wade, Organometallics 2 (1983) 1426-8.
- 379. B. Cowans, J. Noordik, and M. R. Dubois, Organometallics 2 (1983) 931-2.
- C. E. Housecroft and T. P. Fehlner, 380. Organometallics 2 (1983) 690-2.
- 381. T. P. Fehlner, C. E. Housecroft, W. R. Scheidt, and K. S. Wong, Organometallics 2 (1983) 825-33.
- 382. C. Tessier-Youngs, F. Correa, D. Pioch, R. L. Burwell, Jr.,
- and D. F. Shriver, Organometallics 2 (1983) 898-903. R. P. Brint, M. P. Collins, T. R. Spalding, F. A. Deeney, J. Organometal. Chem. 258 (1983) C57-60. 383.
- R. P. Brint, K. O'Cuill, T. R. Spalding, and F. A. Deeney, J. Organometal. Chem. 247 (1983) 61-70. 384.
- H. W. Walker, R. G. Pearson, and P. C. Ford, J. Am. Chem. Soc. 105 (1983) 1179-86. 385.
- 386. E. Roland and H. Vahrenkamp, Organometallics 2 (1983) 1048-9.
- 387. S. Aime, D. Osella, R. Gobetto, B. F. G. Johnson, and L. Milone, Inorg. Chim. Acta 68 (1983) 141-5.
- S. Aime, D. Osella, L. Milone, A. M. M. Lanfredi, and A. 388. Tirpicchio, Inorg. Chim. Acta 71 (1983) 141-7.
- R. J. Haines, N. D. C. T. Steen, and R. B. English, 389. J. Chem. Soc., Dalton Trans. (1983) 1607-10.
- A. J. Carty, G. Predieri, A. Tiripicchio, and E. Sappa, 16th Congr. Naz. Chim. Inorg. [Atti] (1983) 394-7; Chem Abstr. 390. 100:85899f.
- M. I. Bruce and B. K. Nicholson, J. Organometal. Chem. 250 391. (1983) 627-38
- C. E. Briant, K. P. Hall, and D. M. P. Mingos, 392. J. Chem. Soc., Chem. Comm. (1983) 843-5.
- 393. E. Roland, K.Fischer, and H. Vahrenkamp, Angew. Chem. 95 (1983) 324.